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2. Strong interaction  – basic concepts    ver: 11/10/2008 

Strong interaction between hadrons (quarks) is mediated by gluons as is shown in Fig.1. 

Fig. 1 : Scheme of strong interactions – gluon exchange; flow of colored charge at strong 

interaction. 

The basic features of strong interactions are: 

• There exit 3 type of strong interaction charge that is called color. The color charge states 

of quark are: BGR ,,  (red, green, blue). 

• Quanta of strong interactions are gluons – there is 8 gluons: gi i=1...8. 

 

Basic characteristics of gluons: 

 

• Gluons are bosons (spin S=1), they are massless (mg=0) and present colored bi-combinations  

• From 9 possible bi-combinations one is singlet, i.e. it has no colored charge: 

( )BBGGRR
3

1
++                                                                     (2.1) 

• In contrast to photons the gluons can interact between them (as they have colored charge). 
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2.1 Comparison of coupling constant of strong and electromagnetic interactions. 

 

Coupling constant characterizes strongness of interaction – e.g. the electro-magnetic interac-

tion is characterized by coupling constant: 

π
α

4
e 2

em =                                                                                               (2.2) 

 

where e is the  elementary  electric charge. 

An important information about the relation of strong (αs) and electromagnetic (αem) coupl-

ing constant is provided by decays  (strong and electromagnetic) of unstable baryons.  We 

will relay on the fact that decay half-width (Γ) is connected to coupling constant by the rela-

tion: 

 
2~αΓ                                                                                                (2.3) 

 

Let us consider the decay of resonance Σ0(1385): 

K− + p → Σ0(1385) → Λ + π0 

This resonance, v this case, is produced in Kp-interactions and decays due to strong interac-

tion. The life time of this resonance is: 

τ = h/Γ ≈ 10-23 s                                                                                 (2.4) 

 

Let us compare the above-mentioned decay with the electromagnetic one of  Σ0(1192): 

Σ0(1192) → Λ + γ                    with life-time  τ  ≈ 10-19 s. 

The result of comparison is: 
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                                                                    (2.5) 

 

So, the strong interaction is really strong! 

Remark. For comparison of coupling constants is important to have both compared processes 

running with a comparable transferred momentum, because ( as we will see later) coupling 
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constant depends on transferred momentum characterizing a given process. In our case this 

condition is fulfilled as the kinetic energy transferred to the output channel particles is in the 

above considered processes practically the same. 

 

2.2 Global comparison of strong and  electromagnetic interaction 

Electromagnetic interaction. Electric charge in vacuum (e.g. electron) makes a polarization of  

the  vacuum in accordance with the scheme: 

e−↔ virtual photon (γ) ↔ e+e− 

 

 

Fig. 2: Polarization of vacuum (= screening of charge) – diminution of coupling constant with increasing dis-
tance. 
A consequence of the vacuum polarization: 

Electron is surrounded by a cloud of virtual pairs of e+e−, which screens his charge. If we put into 

the field of electron  charge a test unit charge then effective charge of electron obtained using 

Coulomb law, is a decreasing function of distance  (see Fig. 2). 

The elementary electric charge present in the relation for the electromagnetic coupling constant 

(αem=1/137) is a charge measured in Thompson scattering. i.e. at large distances (at small trans-

ferred momenta). 

Strong interaction. Colored charge of quark polarizes the vacuum in accordance with the scheme 

(q≡quark, g≡gluon): 
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The difference from the electron case: virtual gluon can create also gg-pairs, what is 

a consequence of colored charge of gluon. 

Consequence: In case of the strong interactions, unlike of the electromagnetic ones, occurs an 

anti-screening of colored charge. 

Reason: Cloud of colored qq - pairs leads to an increase of αs  at low distances (like in the elec-

tromagnetic case). However cloud of virtual gluon leads to a decrease of αs at r → 0. 

 

The overall effect in system with 8 gluons and not more than 16 flavors is that the coupling con-

stant αs is decreasing (αs → 0) at low distances (r → 0). This effect is called asymptotic freedom. 

 

Confinement of quarks.  

 
Fig. 3: Confinement of quarks: potential energy increases with increasing distance of quarks 

With increasing distance of interacting quarks αs increases at the same time the potential of inte-

racting quarks it is possible to approximate by potential of  harmonic oscillator V(r)= λr (see Fig. 

3). If distance between quarks achieve the value of 1 fm then accumulated potential energy is 

sufficient for creation of a new pair qq and instead one original pair we have two pairs. This 

phenomenon is called the confinement of quarks. 
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How to make small and big distances. Let us consider an interaction of a „point-like“ particle 

intermediated by an intermediate boson (see Fig. 1).  A basic kinetic characteristic of such an 

interaction is transferred 4-momentum, i.e.  4-momentum virtual intermediate boson (q) or its 3-

dimensional momentum (Q): 

( ) ( ) 22222 qQrespkkppq −=′−=′−= .                                    (2.6) 

where p a k (p′ a k′) are 4-momenta of particles entering into (or outputting from) interaction.  

 
 

However to a particle with the momentum Q ( Q
r

= ) can be associated a wave with wave length   

Qπλ 2= . Therefore intermediated boson with high Q „scans“ small distances, while that with 

small Q „scans“ big distances. 

 

2.3 The reasons for introducing colored charge. 

Baryon Δ++ . Let us take into account baryon Δ++ (quark structure: uuu). It is a particle (reson-

ance) with spin 3/2 representing a system of 3 identical fermions. The wave function of Δ++ must 

be therefore anti-symmetric. If we do not assume the existence of colored charge then for the 

wave function of  Δ++ we get:  

( ) ( )321z2
3 rrrs321

rrr
,,,),,( ϕχΨ ⋅=                                                    (2.7) 

The spin wave function ( )zs,2
3χ  is symmetric (rules of adding spins). 

As the quarks u u u are in basic state with orbital momentum L=0 , hence also ( )321 rrr rrr ,.ϕ  must 

be symmetric. Consequence: also the full wave function Ψ  is symmetric and thereby baryon Δ++  

does not obey the Fermi statistics! 

Solution of the problem: Quarks have an additional degree of freedom – colored charge (color) 

and the part of the wave function corresponding to this degree of freedom is anti-symmetric.
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 The anti-symmetricity can be obtained in such a way that colored charge will acquire (at 

least) 3 values (Q1=R, Q2=G, Q3=B). Only in this case for 3 quarks we can create the fully anti-

symmetric colored wave function component: 

kji
ijk

c QQQ
6

1
⋅= εΨ                                                                  (2.8) 

where ijkε  is unit anti-symmetric tensor. 

 

Hadronic production in e+e−–beams. A direct test of the number of colors can be ob-

tained from the ratio  

( )
( )−+−+

−+

→
→

≡−+

μμσ
σ

ee
hadronseeR ee                                                         (2.9) 

Hadron production is realized through hadronsqqZee →→→−+ ** ,γ (see Fig. 4) and as 

quarks with probability 1 hadronize, the sum over all quarks in final state gives the total cross 

 

Fig. 4: Diagram for hadron production: e+ e− →hadrons 

 

inclusive section for hadron production. At energies << mZ the γ-exchange is dominant and the 

ratio −+eeR reads: 
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The measured ratio is shown in Fig. 5. Though the simple formula 2.10 could not explain fully 

the complicated structure of the mentioned ratio it gives the correct mean values of the cross sec-

tions (except of the production threshold of individual quarks). 
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It should be noted that the number of hadron (quark) channel is Nf×NC, where Nf  is the number 

of quark flavours efectively produced at a given energy of  interaction and NC is the number of 

quark colour state.  

 

Fig. 5: Experimental values of the ratio −+eeR vs energy of  −+ee -beam. 

Remark. For more realistic calculation of the ratio −+eeR  it is inevitable to take into account also 

the higher orders of perturbative expansion, e.g. events of the type gqqee →−+  (see Fig. 6). 

 

Fig. 6: Radiation of bremstrahlung gluon, the next order correction to the process qqee →−+ . 
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Decay of  τ-lepton. This decay presents an additional evidence for  NC=3. The mentioned decay 

goes through  W-emission (Fig. 7). As coupling of W-boson to weak charge currents is the same 

for all leptons and quarks, we have (2+NC) equal contributions (if we neglect the masses of  

 

Obr.7: Diagram of  τ−lepton decay. 
quarks and leptons and also the contribution of strong interactions). Two of them represent lep-

tonic decay modes ( ee νντ τ
−− →  a  μτ νμντ −− → ) and additional NC is connected with qq -

pairs of different colors: udθτντ →−  ( sdd CC θθθ sincos += ). As a consequence it is ex-

pecting: 
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At the same time experiment gives:  

            
( ) ( )

( ) 040563BBB1R

2406517B1800118B

ee

e

..

%..,%..

±=−−=
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→→→

→→

τμτττ

μττ
                      (2.12) 

 

It is in a quite good agreement with hypothesis NC=3. 
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Decay of  π0-meson. The decay γγπ →0  goes through a triangle quark loop (see Fig. 8). 

 

 

Obr.8: Triangle quark loops generating decay γγπ →0  

The cross vertex denotes the axial current ( )dduuA 55
3 γγγγ μμμ −≡  . The direct calculation 

gives: 

 

( ) eV737
f64

m
3

N
23

322
C0 .=⎟
⎠

⎞
⎜
⎝

⎛=→
π

π

π
α

γγπΓ                                                                     (2.13) 

 

where fπ = 92.4 MeV  is the coupling constant of π0 to 3Aμ , which is obtained from  μνμπ ~−− →  

(assuming the isospin symmetry). The agreement with the experimental value Γ=7.7 ± 0.6 is re-

markable. 

 



 11

2.4 Strong interactions and symmetries 

 

Strong interactions exhibit a series of symmetries: 

• charge SU(3)c symmetry 

• symmetry of space inversion 

• symmetry of  charge conjugation 

• „flavor“ SU(n)f  (n=3,4,..) symmetry. 

 

Symmetry of interaction Lagrangian leads to conservation laws (Noether theorem ). In case of 

strong interactions it leads to the following conservation laws: 

 

• Space and charge parity 

• isospin, strangeness, „charm“, „beauty“, „true“ 

• in strong interactions are valid also generally valid conservation laws connected with va-

lid  symmetries (the law of conservation of 4-momentum, angular momentum and charge 

). 

The charge SU(3)c symmetry. From the view point of strong interactions this symmetry means 

that colored charges are equivalent.   
 

2.5 Group SU(3). 

 

Definition. It is a group of unitary and unimodular transformations in 3-dimensional complex 

space: 

{ }1U1UUU ==+ deta,                                                                  (2.14) 

 

This group has 8 free parameters   duc NNNn −−= : 

• Nc=18 is number of parameters of  complex matrix 3×3. 

• Nu=9  is number of conditions coming from unitarity  

• Nd=1  is number of conditions coming from unimodularity  
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A general form of SU(3) element is: 

81L== ααεα LieU                                                                      (2.15) 

where εα is 8 real parameters (angles of rotation in v C3), 

       Lα - independent hermitian operators ( αα LL =+ ) with zero trace, which are the generators of  

infinitesimal transformation of  the grupe SU(3): 

ααε LiU += 1                                                                                   (2.16) 

Commutation relations for  Lα are 

[ ] index sum., ≡= γγ
αβγβα LfLL                                                   (2.17) 

where fαβγ are anti-symmetric structural coefficients. 

Two of the Lα operators are diagonal (They cannot be  3 because  Lα  has zero trace). 

  

The Gell-Mann choice of  Lα for 3-dimensional  representation of SU(3): 

αα λ
2
1

=L                                                                                             (2.18) 
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Structural coefficients: 

0  ostatné
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 Representations of group SU(3). 

Matematical approach. 

 Representation of group G in a vector (linear) space X we understand transformation T, 

which assigns to each element g of group G a linear operator T(g) in space X, in such a way that 

is valid: 

1. T(e) = 1 , where e is the unit of the group G and 1  is unit operator in space X, 

2. T(g1⋅g2)  = T(g1) ⋅T(g2)  for all  g1, g2 ∈ G 

  

The space X is a space of representation, operators T(g) are operators of  representation. If 

dim(X) = n, then we speak about n−dimensional representation (or representation of 

nth−degree). In such case the elements of group G we can represent in the space X by matrices 

n×n. 

 

 

Group SU(3)c   Physical meaning. 

 

Quark can be in 3 colored charge states: 

Q R Q G Q B1 2 3= = =                                              (2.21) 

The colored (charge) state of quark can be expresses as follows: 

1
232221

3

2

1

321

=++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

→++=

qqq

q
q
q

BqGqRqq
                                           (2.22) 

 

where qi , i=1..3 are coordinates of vector q  in 3-demensional complex space of quark colored 

state  → their interpretation:   

    q i 2
 is probability of quark to be in colored state  Qi . 
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The space of quark colored charge state )(3 RGBF , i.e. the space with the base  ( )BGR ,,  

over the field of complex numbers, is isomorphic to the 3-dimensional complex space C3, hence 

states from )(3 RGBF  can be represented by vectors from  C3   :  

3 3( ) isomorfizmusF RGB C⎯⎯⎯⎯⎯→                                                      (2.23) 

 

 

Action of group SU(3)c in 3( )F RGB . From physical point of view group SU(3)c change color 

composition of colored charge state (changes proportion of colored components of  charge state) , 

hence transforms colored state ( )RGBFq 3∈  to other colored state ( )RGBFq 3∈′  : 

BqGqRqqBqGqRqq
cSUg

321
)3(

321 ′+′+′=′⎯⎯⎯ →⎯++= ∈   (2.24) 

 

In space C3 (space of representation)  an action of the element g∈ SU(3)c will manifests as fol-

lows 

 

 

     (2.25) 

 

If a colored state of quark we express by means of a triplet of complex numbers (q1, q2, q3 ), i.e. 

by means of a vector from C3, then elements of the group SU(3)c will be represented in the space 

of representation (C3 ) by complex matrices of 3×3 : 

8...1,
2
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igTg  ,                              (2.26) 

 where λα are the Gell-Mann matrices.  In such a case we speak about the so called fundamental 

representation of the group SU(3)c  ( 3 ). 

Summary. At the fundamental representation of the group SU(3)c the space C3 is the space of 

representation (hence the 3-dimensional color space F3(R,B,G) ) is represented by the 3-

dimensional complex space C3) and elements of the group SU(3)c are represented by complex 

matrices of 3×3. 
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The invariance of strong interactions to the group SU(3)c means that dynamics of colored quarks 

(interaction cross sections) does not depend on  type of colored charge. 

Adjoint representation 

Let us consider a quark in a colored state  q  and make the charge conjugation, i.e. let us change  

a particle by its anti-particle: 

( )

3

1
1

1 2 3 2
2isomorfizmus do 

3
3
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i i
i

q q
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q q
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⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= ≡

          (2.27) 

where BaGR ,  are anti-colors to colors R G B, ,  and coordinates qi we will call cova-

riant coordinates of colored state (unlike to qi – contravariant coordinate). The covariant coordi-

nates of colored state represent by yourselves the coordinates of conjugated (hence „anti-

colored“) state in the space ) G,B,R(F3 (3-dimensional colored space with the basis 

( )BGR ,,   over the field of complex numbers – it is a dual space to the space (R,B,G) F3 . 

It is evident that in the space C3 that represent the space of „anti-colors“ ( ) G,B,R(F3 the 

elements of group SU(3)c are represented by the C-matrices of 3×3 : 
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that in general have the following form: 

( ) ( ) k
k
ik

i
kii qUqUqq

U
2
iU

+∗

∗∗

==′→

=⎟
⎠
⎞

⎜
⎝
⎛ ⋅−= α

α λεexp
)

                                                  (2.29) 

In this case (action of SU(3)c in space of colored state of anti-quarks) we speak about the adjoint 

representation ( 3  ). 
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Representations of higher dimension. 

 

From fundamental ( 3 ) and adjoint representation ( 3  ) it is possible to create representation of 

higher ranks. Physically it means that on the base of colored states of quark and anti-quark com-

binations. 

 

The colored bi-combinations created from the colored state of quark ( q ) and anti-quark ( q ), 

which we will denote as qq , represent by themselves a vector v C-space with the basis   

31jiQQ ji ..., =⊗  and a bi-colored state is represented by coordinates j
ii

j qqT =  , i.e. by 

tensor of the group SU(3). The space of bi-colored combination is a tensor product of one-

component colored spaces, for which is valid: 

3 3 1 8⊗ = ⊕                                                                   (2.30) . 

The decomposition (2.30) means, that 9-dimensional space of bi-colored state it is possible to 

decompose into two enclosed (from the view point of the SU(3) group) sub-spaces:  the subspace 

of colored singlets and subspace of colored  octets. 

Basis of the SU(3) singlet:       ( )1
3

RR BB GG+ +    

 

Basis of the SU(3) octet:       ( ) ( )
RG RB GR GB BG BR

RR GG RR GG BB
1
2

1
6

2− + −
 

In nature the colored singlet is realized by mesons ( qq ) and the colored octet by gluons. 

 

Tri-colored combinations. The colored space is can be decomposed as follows: 

3 3 3 1 8 8 10⊗ ⊗ = ⊕ ⊕ ⊕  

In nature occurs the colored singlet combination that is realized by baryons. 


