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4.1 Relativistic description of particles

A relativistic particle is characterized by:

» 4-vector of position:

(ct, %) = (x°,x*,x2,x%) = x# = x 1)
* 4-momentum:

(%*)E(F’O’plipz’ps)fp"fp (2)
4-vectors<” and p* are elements of 4-dimensional pseudo-Euclidiaseslla (space
coordinates and of momenta separately).
= Properties of My
« Scalar product of two 4-vectors (ity) A = (AO, A) a Bt = (BO,B) :

A[B=A°B°- A[B (3)
* Rotations inM,4 = Lorentz transformatioss they create the Lorentz group (LG).

Scalar product is an invariant of LG

 Covariant 4-vector: A* = (AO,—A) — for scalar product is valid:
AB=A“B,=AB*“=g,A“B"=g"AB, (4)

whereg,, is the metric tensor:
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e Invariants of LG

- Interval: XﬂX”:CZtZ—)_(’2 (6a)

E2
—  Square of mass: P, p# = C—z— r)z = m?c? (6b)

—~  Phase: p,x* = Et - pX (6¢)



The natural units;: c¢c=1 a =1 (7)

— QM- assignment of operator:

v —ihD=—ih(i 9 ij aE_inl (8a)
P =" ad a2 & -
In the natural units:
(2 .
E,p)-i|— ,-0O]|=id* 8b
(E.p) ( o J (8b)
Covariant form of operatord : d“E(%'DJ (8c)
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4.2 Klein - Gordon equation. Antiparticle

Let us have a relativistic particle with momentpnthe relation for energy is:
E? = p*> +m?. If we substitutéE and p by operators as in QM:
(E.p) - if2..0).
From the relation for energy we obtain the Klein-Gordon(i€Guation:
-—¢+0%=m’p rep. (9,0"+m’)p=0 (2.1)
Whered ,0# =97 -0° is D’Alembert’s operator #(t,r) is a complex function from

which we expect that the square of its moq¢|(2=3 will be a probability density to find

particle in the positiorr .



Solution for a free particle with momentunp :
p(t, %)= N &7 (E-%) = N @ (2.2)
Where

E =+ p?+m? are eigenvalues of energy,

N is the normalization constant{g|* =|N|” is the density of particles.
Problem:
What does it mean the solutign= —/ p* + m? <0? This solution we cannot throw

away as the system of states would not be full.
Continuity equation (CE).

From KG equation using the following re-arrangemeriig"” [KG +i ¢ [KG"

We obtain:
2,[il¢"0.4 - 90,4")|+ Otlilp 0p - p09")| = 0 (2.32)
hence
0,p+00=0,j"=0 (2.3b)

Where j#is 4-vektor of current density connected with sbéution ¢(x) .
Application of CE for the solution for free pargclvith momentump leads to:

i* =|NJ* p# (2.4)

For the solution with the negative enerdy £ —/ p> +m? (: p°)< 0) it leads tgo < 0!

Hence it means a negative probability of partickespnce. Let us assume that particle has
the charge-eand let us make the substitution:

i* - -—e[*
In the following under the 4-vector current densvg will understand:

j# =-ie(g"0“p - po+g") (2.5)



Interpretation of the solution with &0 (Pauli a Weiskopf)

For free particle with momentugn, energyE (>0) and charge-ewe have:

i*=-¢N|"p*
for anti-particle with momentup, energyE (>0) and charge we have:
j* =¢N[" p* =-eN[*(-E,-p) (2.6)

Hence the current density for anti-particle withieen p andE (>0) agree with the
current density for particle with momenturp and energy-E.

Interpretation: Emission of antiparticle with ener@yby some system is equivalent to

absorption of particle with energye by this system.
r e’ | e

1 ¢as (2.7)
|E>0 LE<O

Else the solutions for particle with<0 moving in time backward, describe anti-particle
with E>0 moving in time forward.
Reason: the factore ™ describing evolution of system stationary one waite:

e iE = g i (-E)-1) (2.8)

4.3 Non/relativistic perturbation theory

Let us consider, in frame of the QM approach, a particle enclosed in a volume. The
guantum states of the particle are found as aiealof Schiédinger equation (SchR):
Hop, =E.#,  pritom [g(x)B,dx=4,,
() =P(X,1) =9, (X) &
If particle is moving in some force fiel&/(X,t) ), then it is needed to look for solution of

SchR:

(3.1)

aﬁix) = (Ho +V ())(x) (3.2)

As the{¢n} is complete system of functions solution of Eq2)®an be looked for in the

form:



pxH=>a,0@,xEe" (3.3)

Applying _[d3>? ¢} (X)Oto Eq. (3.2) and expressingg by means of (3.3) one gets:

day (1) _

" |Za (t) A% g7 (R)V (%,1) B, (X) & &5 (3.4)

where a,(t )is the probability amplitude of particle presen@e timet) in state|n>,
V., :J'd?’)? P! (X)V (X,1) @, (X) is the particle transition probability from state to
state| f ).

Let us suppose that the potential is small anditcked on at the time=-T/2 and is

switch off att=T/2 and at the same time the particle was at the begnn state
li)(=¢.):

1 k=i

0 k#i (3:5)

a (=7%) = {

If the potential is small and lasts only shorthen conditions (3.5) are irff'1

approximation, fulfilled during the whole interv@ll/2, T/2) and from (3.4) and (3.5) it

follows:

da(; ®_ —i [d°x g\ (XN (X,1) @, () & " (3.6)
Having integrated (3.6) and using denotatios (t, X) one gets:

Ty =a, () ==i [d*x @7 )V (x) ¢, (x) (3.7)

Let us suppose that the potential does not depenidneV (x) =V (X) then

T, =i [d*% S (V () 4, (%) e =) 0
v, o (3.8)

=2nlyy, H5(Ef _Ei)

Fermi rule. The transition probability from stat > to state| f} is given by:

2
W, = mu =2nv,| o€, -E,) (3.9)



Higher ordersof perturbativetheory

If in the relation (3.4) foda, (t)/dt we express,(t) by means of (3.7), hence we use for

it the T approximation, then we get:

da, (t) _
dt

() P2V, j dt'e ' (E By, g ENE! (3.10)

1 pnbllzene n#i

The transition amplitude the reads

Tﬁ:(...)1+(—i)22Tdte“(E":Ef)‘m/ v, Djdt' g (E-Ea) (3.11)

N#i —o

To keep the integral througtt” limited (at integration toes) we added to integraref :

_exg-i(E, —E, +i&)t)
t' E. E t' E -E L—n A2
jd exp(-i(E, jd exp—i(E, —E )t') =i E—E +ie (3.12)
For the transition amplitude it gives:
T, =—2m'(vfi SV, Bt W ]J(Ef -E,) (3.13)
oy E,-E+ieg

The transition from the stafé) to state| f ) can be depicted as is shown in Fig. 1. The

second term of the perturbative expansion canteepreted as follows: At the beginning

particle is in the stavb} and, due to presence of field, in a certain pairtt time it will
interact and transit to an intermediate stat}e in which will be propagating until the

moment when it reintegrate once-again and tratsitse final stat¢ f }



>

i>

Fig. 1: Scattering of a particle on the static poté - 1st and 2nd order of perturbative
approach.

The interpretation of the first term of the pertatibe expansion is direct. The higher
orders of the perturbative expansion can be oldameuch a way that into the relation
(4) we replace(t) by its perturbative expansion.

In general the above mentioned scattering can &eacterized by the following:

» Interaction vertex is characterized by the fastgr

. . 1 .
« Intermediate statgn) describes propagatefﬁ : for the virtual state the
- ie

energy conservation law is not valig,(Z E;).

» The law of energy conservation is valid for theiatiand final state- 0'(Ef -E, )

This perturbative theory does not contain:
» Diagrams in Fig. 1 present scattering on statiempidl and we are interested in
scattering of particle in the field of other pasic

» Itis needed to describe interaction of anti-péetic



4.4 Particle with spin S=0 in electromagnetic field

The basic assumptions are the following:

» Electromagnetic field is described by 4-potenciat: = (AO, A).

» Particle has spi®=0 momentump and charge-e.

From theory of electromagnetic field we have:

Motion of charge particle in the fiel¥ we can get from free motion by the replacement:
p# - p¥ —eA¥, resp.vQM: i0 - i0 +eA*.

The equation of motion of charged particle in tiedfA* is:

(0,04 +m?)p = (ielo , A + A,0%)+e?A%)p (4.1)

-V

First order of prerturbative theory

* The studied particle is at the beginning in sf@atand due to its interaction with the
field passes to the stage

« In potentialV the terms/# are neglected

Under these conditions the transition element reads

=i [dx@? )V ()8, (x) = ijdx¢?(x)(—ie)(a,,Aﬂ + A3 ), (%)
-i[-ie)eta, (a%g, )+ #2(0,4. Ja*Jox
-i[dx(-ie)-(0,0%), +0%(0,0,)] A*

Ju ()

= —i_[dxjy(x)A”(x)
At the derivation we have used:

0,(@7A"8,)=(0,07)n"8, +¢70,(A"¢,)  and the fact thgidxa,, () =0

Tfi

(4.2)

The current connected with transition of partictend stateg to stateg:
in0) = -ielg?(0,8,00-(0,87 00, (%]

=eN,N, (p + p, )ﬂ expli(p; - pi )x)

(4.3)



Fig. 2: Graphical representation of
amplitude F :
Particle with spin O scatters on static

potential A

AM

Scattering of two particles with spin O
1) We look at the scattering of two particles of spim such a

(§ Iu E 7 Pg

PA

way that the first of the moves in the field of #exond one.

At the same time the potentiahj;, , generated by the second
particle reads:

O2AL (X) = j& (%) (4.4)
where

j(lé)(x) = _eN2N4(pB *+ Pp )ﬂe_i(pD_pB)x

The solution for the potential is:
A= I 00, =P =P (4.5)
Finally the amplitude of scattering of two partglef spin O (e.grrandK ) reads:
Ty = [0 00 A% 00 =18 100 it 09 =1 [4 1005165 (9

(4.6)

Where j(x) (jf’(x)) is current density connected with the transitinfK ) from initial

to final state (i) » | f)). The quantitieg% is propagator photon.
q



If we express thg {’ (x) (jff’(x)) in the relation (4.6) by means (4.4) and carried o
integration — we get:
Ty ==iN;N,N;N, m2ﬂ)454(p1+ P, = Ps — P) My (4.7)

where

—-iMg = ie(pl + ps)#(_i ?:;Jie(pz + p4)V (4.8)

Remark: Note the symmetry between both particlasu(dK).

Normalization: One of the possible normalizations is the nornadilinper 1 particle in
the volume V
1

t,X)=NRB™ = e P (4.9)
o(t.%) PR
Usually it is takerV=1. Applying the continuation equation we get:

jd xp=1

\%

4.5 Therelation between cross section and transition amplitude

The relation between experimentally measured giyafotioss section) and quantity given
by theory (transition amplitude):

Wy
Vi, P

do = e (5.2)

where

* W is the transition probability per unit time:

2

N
"7 VT 2E,2E,2E,2E, V*

(2”)454“)1 TP, TP~ p4) (5.2)

» The density of initial states:

o M

|V|,01,02 - V_2 (5.3)
e dQ je patet kon€nych stavov:
vd®p, vd®p,

C e @y

(5.4)




After putting the (5.3-5) into (5.2) we get:
|2 1 d’ Ps d? P4
V|2E,2E, D(Zn)32E3 (27)° 2E,

Analogically for the decay rateN — 1+2+...+n):

E(2”)4 54(p1 TP, 7P~ p4) (5.5)

da=|Mfi

4 =4 _ o
2B, (2n)’2E, (2nm)’2E, en) 8 (py=pyo=p)  (56)

3 3
ar=m,_, -t g dh d_P:

Two particle phase space
In case of the 2-particle final state phase spaiter(inclusiom-function) we have:
vd®p, Vvd®p,

2m*o*(P- p- p) =
2E3(2”)32E4(2ﬂ)3( )0 (P-Rp-R)

dLips,(P) =

(5.7)

=1 _a*p,o(¢-m)e( g po( §- m) O HBY ~ g B

(27)’

wheremg andm, are the masses of output particles Brydp; + p; is the full momentum

of input particles.

We used the properties &ffunction:

1
[9008(F00)dx=[ g(») f,(x)|5(x—2i: x) (5.8)

Wherex; are the zero points of the functit{r)

After integrating (5.7) throughl“ p, and the subsequent integration throat] we get:

. 1
dLips, (P) =Wd4 p, 3(pz -m2)B((P - p.)? -m2)o(p?)
1 dp,
P Gy 2=,

(5.9)

B((P - p,)? -m2)

After going to spherical coordinated {p, = p®dpd cos8d¢,

p=(p2) +(p2) +(p2) ) finally we get:



2

. _ 1 p ( 2 [~2 2 2 2)_
dLips, (P) =+—=dcosfd¢g dp————B\M “ - 2M -m;+m;-m;|=
p 2( ) (2”_)2 ¢ p2 p2+m§ p 3 3 4

V 2 2 2
=1 dcosad¢/]2(M ,m3,m4)
(2m)? 8M ?

(5.9)

where A(a,b,c) = a® +b* +¢* - 2ab-2ac- 2bc



