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4.1 Relativistic description of particles 

 

A relativistic particle is characterized by: 

• 4-vector of position: 

                     ( ) ( )ct x x x x x x x, , , ,
� ≡ ≡ ≡0 1 2 3 µ

                               (1) 

• 4-momentum: 

                     ( ) ( )E
c x p p p p p p, , , ,
� ≡ ≡ ≡0 1 2 3 µ

                          (2) 

4-vectors xµ and  pµ are elements of  4-dimensional pseudo-Euclidian space M4  (space 

coordinates and of momenta separately). 

⇒⇒⇒⇒ Properties of M4 

• Scalar product of two 4-vectors (in M4) ( ) ( )A A A B B Bµ µ= =0 0, ,
� �

 a   : 

                     A B A B A B⋅ = − ⋅0 0
� �

                                                            (3) 

• Rotations in M4 ≡ Lorentz transformation ⇒ they create the Lorentz group (LG).   

Scalar product is an invariant of LG 

• Covariant 4-vector:  ( )A A Aµ = −0 ,
�

 → for scalar product is valid: 

A B A B A B g A B g A B⋅ = = = =µ
µ µ

µ
µν

µ ν µν
µ ν                                  (4) 

where gµν   is the  metric tensor: 
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                                            (5) 

• Invariants of LG 

→    Interval:                       x x c t xµ
µ = −2 2 2�

                                    (6a) 

→    Square of mass:             p p
E

c
p m cµ

µ = − =
2

2
2 2 2�

                   (6b) 

→     Phase:                          p x Et p xµ
µ = − ⋅� �                                   (6c) 



The natural units:        c = 1  a   ℏℏℏℏ = 1                                                                           (7) 

→          E p m2 2 2− =�  

 

→  QM −   assignment of  operator: 
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ℏ ℏ ℏp i i
x x x

E i
t

→ − ∇ ≡ − 





 →

∂
∂

∂
∂

∂
∂

∂
∂1 2 3 ,  ,     a                         (8a) 

In the natural units: 

                               (((( )))) µµµµ∂∂∂∂
∂∂∂∂
∂∂∂∂

i
t

ipE ≡≡≡≡

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


 ∇∇∇∇−−−−→→→→  ,,
�

                                        (8b) 

Covariant form of operator    ∂ :      






 ∇∇∇∇≡≡≡≡  , 
t∂∂∂∂

∂∂∂∂∂∂∂∂ µµµµ                                                     (8c)     

The shorten writings: 
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                                                                             (9) 

 

4.2 Klein - Gordon equation. Antiparticle 

 

Let us have a relativistic particle with momentump
�

, the relation for energy is: 

222 mpE += � . If we substitute E and p
�

by operators as in QM: 

(((( )))) (((( ))))∇∇∇∇∂∂∂∂→→→→ ,, tipE
�

, 

From the relation for energy we obtain the Klein-Gordon(KG) equation: 

2
2 2 2

2 resp. ( ) 0m m
t

µµµµ
µµµµϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ∂∂∂∂− + ∇ = ∂ ∂ + =− + ∇ = ∂ ∂ + =− + ∇ = ∂ ∂ + =− + ∇ = ∂ ∂ + =

∂∂∂∂
                                        (2.1) 

Where 22 ∇−∂=∂∂ t
µµµµ

µµµµ  is  D´Alembert’s operator a ( )rt
�

,ϕϕϕϕ  is a complex function from 

which we expect that the square of its module 
2ϕϕϕϕ  will be a probability density to find 

particle in the position r
�

. 



Solution for a free particle with momentum p
�

: 

( ) ( ) ipxxpEti eNeNxt −−− ⋅=⋅=
���

,ϕϕϕϕ                                               (2.2) 

Where 

 22 mpE +±= �
 are eigenvalues of energy, 

 N is the normalization constant: 
22

N=ϕϕϕϕ  is the density of particles. 

Problem: 

What does it mean the solution 022 <+−= mpE
�

? This solution we cannot throw 

away as the system of states would not be full. 

 

Continuity equation (CE). 

 

From KG equation using the following re-arrangement: ∗∗ ⋅+⋅− KGiKGi ϕϕϕϕϕϕϕϕ  

We obtain: 

( )[ ] ( )[ ] 0

0

=∇−∇⋅∇+∂−∂∂ ∗∗

=

∗∗

��� ���� ����� ���� ��
�
jj

ttt ii ϕϕϕϕϕϕϕϕ
ρ

                          (2.3a) 

hence 

0=∂≡⋅∇+∂ µ
µρ jjt

�
                                                            (2.3b) 

Where  jµµµµ is 4-vektor of current density connected with the solution ϕϕϕϕ(x) . 

Application of CE for the solution for free particle with momentum p
�

leads to: 

µµµµµµµµ pNj
2=                                                                               (2.4) 

For the solution with the negative energy ( ( ) 0022 <=+−= pmpE
�

) it leads to ρρρρ <<<< 0000 ! 

Hence it means a negative probability of particle presence. Let us assume that particle has 

the charge –e and let us make the substitution: 

µµµµµµµµ jej ⋅−→  

In the following under the 4-vector current density we will understand: 

( )∗∗ ∂−∂−= ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ µµµµµµµµµµµµ iej                                                          (2.5) 

 



Interpretation of the solution with E<<<< 0000  (Pauli a Weiskopf) 

 

For free particle with momentump
�

, energy E (>0) and charge –e we have: 

µµµµµµµµ pNej
2−=  

for anti-particle with momentump
�

, energy E (>0) and charge e we have: 

( )pENepNej
�−−−== ,

22 µµµµµµµµ                                               (2.6) 

Hence the current density for anti-particle with a given p
�

 and E (>0) agree with the 

current density for particle with momentum −−−− p
�

and energy −−−−E. 

Interpretation: Emission of antiparticle with energy E by some system is  equivalent to 

absorption of particle with energy −−−−E by this system. 
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                                                   (2.7) 

Else the solutions for particle with E<<<< 0 moving in time backward, describe anti-particle 

with E>>>>0 moving in time forward.  

Reason:  the factor iEte−  describing evolution of system stationary one can write: 

))(( tEiiEt ee −−−− =                                                                      (2.8) 

4.3 Non/relativistic perturbation theory 

Let us consider, in frame of the QM approach, a free particle enclosed in a volume. The 

quantum states of the particle are found as a solution of Schrödinger equation (SchR): 

tiE
n

mnnmnnn

nextxx

dxxEH

−

∗

⋅==

=⋅= ∫
)(),()(

)( pritom0

�� ϕϕϕϕϕϕϕϕϕϕϕϕ

δδδδϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ
                                        (3.1) 

If particle is moving in some force field ( ),( txV
�

), then it is needed to look for solution of 

SchR: 

( ) )()(
)(

0 xxVH
t
x

i ψψψψψψψψ +=
∂

∂
                                                                                   (3.2) 

As the {ϕϕϕϕn} is complete system of functions solution of Eq. (3.2) can be looked for in the 

form: 



tiE
n

n
n

nextatx −⋅⋅=∑ )()(),(
�� ϕϕϕϕψψψψ                                                                   (3.3) 

Applying ⋅⋅∫
∗ )(3 xxd f

�� ϕϕϕϕ  to Eq. (3.2) and expressing ψψψψ  by means of (3.3) one gets: 

tEEi
n

n
fn

f fnextxVxxdtai
dt

tda )(3 )(),()()(
)( −−∗ ⋅⋅−= ∑ ∫

���� ϕϕϕϕϕϕϕϕ                          (3.4) 

where  )(tan  is the probability amplitude of particle presence  (in time t) in state n , 

)(),()(3 xtxVxxdV nffn

���� ϕϕϕϕϕϕϕϕ∫
∗=  is the particle transition probability from staten   to 

state f . 

Let us suppose that the potential is small and is switched on at the time t=-T/2 and is 

switch off at t=T/2 and at the same time the particle was at the beginning in state 

( )ii ϕϕϕϕ≡ : 





≠
=

=−
ik

ik
a T

k 0

1
)( 2                                                                             (3.5) 

If the potential is small and lasts only shortly, then conditions (3.5) are in 1st 

approximation, fulfilled during the whole interval (-T/2, T/2) and from (3.4) and (3.5) it 

follows: 

tEEi
if

f fiextxVxxdi
dt

tda )(3 )(),()(
)( −−∗ ⋅−= ∫

���� ϕϕϕϕϕϕϕϕ                                   (3.6) 

Having integrated (3.6) and using denotation ( )xtx
�

,≡  one gets: 

)()()()( 4
2 xxVxxdiaT if

T
ffi ϕϕϕϕϕϕϕϕ∫

∗−==                                              (3.7) 

Let us suppose that the potential does not depend on time )()( xVxV
�

=  then 

( )

( )
( )ifif

EE

tEEi

V

iffi

EEV

edtxxVxxdiT

if

if

fi

−⋅⋅=

⋅⋅−=

−

∞

∞−

−−∗
∫∫

δδδδππππ

ϕϕϕϕϕϕϕϕ

δδδδππππ

2

)()()(

2

3

�������
���� ����� ��

���

                                  (3.8) 

Fermi rule. The transition probability from state i  to state f  is given by: 

(((( ))))if

2

fi

2

fi

T
fi EEV2

T

T
W −−−−========

∞∞∞∞→→→→
δδδδππππlim                                             (3.9) 



 

Higher orders of perturbative theory 

 

If in the relation (3.4) for dttda f )(  we express an(t) by means of (3.7), hence we use for 

it the 1st approximation, then we get: 

 ( )
�

( ) ∑ ∫
≠ ∞−

−−′−−′−+=
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t
tEEni
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tEEi

ni
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f fni eVetdVi
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⋯                 (3.10) 

 

The transition amplitude the reads 

( ) ( ) ( ) ( )∑ ∫ ∫
≠

∞

∞− ∞−

−−=− ′⋅⋅⋅−+=
in

t
tEEi

nifn
tEEi

fi
nifn etdVVedtiT 2

1⋯                 (3.11) 

To keep the integral through dt´ limited (at integration to -∞) we added to integrand e-t´:  

( )( ) ( )( ) ( )( )
εεεε

εεεε
iEE

tiEEi
itEEitdtEEitd

ni

ni
t

ni

t

ni +−
+−−=′−−′→′−−′ ∫∫

∞−∞−

exp
expexp      (3.12) 

For the transition amplitude it gives: 

( )if
in

ni
n

fnfifi EEV
iEE

VViT −







⋅

+−
⋅+−= ∑

≠

δδδδ
εεεε

ππππ 1
2                                      (3.13) 

The transition from the state i  to state f  can be depicted as is shown in Fig. 1. The 

second term of the perturbative expansion can be interpreted as follows: At the beginning 

particle is in the stave i  and, due to presence of field, in a certain point and time it will 

interact and transit to an intermediate  state n , in which will be propagating until the 

moment when it reintegrate once-again and transits to the final state f . 



 

Fig. 1: Scattering of a particle on the static potential - 1st and 2nd order of perturbative 
approach. 
 

The interpretation of the first term of the perturbative expansion is direct. The higher 

orders of the perturbative expansion can be obtained in such a way that into the relation 

(4) we replace an(t) by its perturbative expansion. 

In general the above mentioned scattering can be characterized by the following: 

• Interaction vertex is characterized by the factor Vni. 

• Intermediate state n  describes propagator 
εεεεiEE ni +−

− 1
; for the virtual state  the 

energy conservation law is not valid (En ≠≠≠≠ Ei). 

• The law of energy conservation is valid for the initial and final state ( )if EE −→ δδδδ . 

This perturbative theory does not contain: 

• Diagrams in Fig. 1 present scattering on static potential and we are interested in 

scattering of particle in the field of other particle. 

• It is needed to describe interaction of anti-particle. 

 



4.4 Particle with spin S=0 in electromagnetic field 

The basic assumptions are the following: 

• Electromagnetic field is described by 4-potencial: ( )AAA
�

,0=µµµµ . 

• Particle has spin S=0, momentum p
�

and charge –e. 

From theory of electromagnetic field we have: 

Motion of charge particle in the field Aµµµµ  we can get from free motion by the replacement:  

µµµµµµµµµµµµ Aepp −→ ,  resp. v QM:   µµµµAeii +∂→∂ . 

The equation of motion of charged particle in the field Aµµµµ  is: 

( ) ( )( )ϕϕϕϕϕϕϕϕ µµµµ
µµµµ

µµµµ
µµµµ

µµµµ
µµµµ ���� ����� ��

V

AeAAiem
−

+∂+∂=+∂∂ 222                                         (4.1) 

First order of prerturbative theory: 

• The studied  particle is at the beginning in state ϕϕϕϕi  and due to its interaction with the 

field passes to the state ϕϕϕϕf; 

• In potential V the terms ∼∼∼∼e2 are neglected. 

Under these conditions the transition element reads: 

(((( ))))
(((( )))) (((( ))))[[[[ ]]]]

(((( )))) (((( ))))[[[[ ]]]]
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∫∫∫∫
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ifif
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���� ����� ��

       (4.2) 

At the derivation we have used: 

( ) ( ) ( )ififif AAA ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ µµµµ
µµµµ

µµµµ
µµµµ

µµµµ
µµµµ ∂+∂=∂ ∗∗∗         and the fact that ( ) 0=∂∫ ⋯µµµµdx  

 

 

The current connected with transition of particle from state ϕϕϕϕi to state ϕϕϕϕf: 

( )[ ]
( ) ( )( )xppippNeN

xxxxiexj

iffifi

ifif
fi

−⋅+==

∂−∂−= ∗∗

exp

)()()()()(

µµµµ

µµµµµµµµµµµµ ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ
                            (4.3) 



 

 

 

Fig. 2: Graphical representation of 

amplitude Tfi : 

Particle with spin 0 scatters on static 

potential Aµ. 

 
 

 

Scattering of two particles with spin 0 

 

We look at the scattering of two particles of spin 0 in such a 

way that the first of the moves in the field of the second one. 

At the same time the potential, µµµµ )2(A , generated by the second  

particle reads: 

)()( )2()2(
2 xjxA µµµµµµµµ =∇                                   (4.4) 

where  

( ) ( )xppi
DB

BDeppNeNxj −−+−= µµµµµµµµ
42)2( )(  

 

 The solution for the potential is: 

BD ppqxj
q

xA −=−= ,)(
1

)( )2(2)2(
µµµµµµµµ                                                              (4.5) 

Finally the amplitude of scattering of two particles of spin 0 (e.g. ππππ and K ) reads: 

∫∫∫ −=−=−= )()()()()()( )()()(
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q

g
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q

1
xjxdixAxjxdiT 221
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fi

υµνµµ
µ

µ
µ     

                                                                                                                         (4.6) 

Where ( ))()( )()( xjxj 21
µµ  is current density connected with the transition ππππ ( K ) from initial 

to final state ( fi → ) .    The quantitie 
2q

gµν   is propagator photon. 



If we express the ( ))()( )()( xjxj 21
µµ  in the relation (4.6) by means (4.4) and carried out 

integration – we get: 

fi4321
44

4321fi Mpppp2NNNiNT ⋅−−+⋅−= )()( δπ                      (4.7) 

where  

( ) ( )νµνµ
42231 ppie

q

g
ippieiM fi +








−+=−                                       (4.8) 

Remark: Note the symmetry between both particles (ππππ and K).  

Normalization: One of the possible normalizations is the normalization per 1 particle in 
the volume V. 

(((( )))) ipxipx e
VE

eNxt −−−−−−−−

⋅⋅⋅⋅
====⋅⋅⋅⋅====

2

1
,
�ϕϕϕϕ                                                          (4.9) 

Usually it is taken V=1. Applying the continuation equation we get: 

∫ =
V

3 1xd ρ�  

 

4.5 The relation between cross section and transition amplitude 

 
The relation between experimentally measured quantity (cross section) and quantity given 

by theory (transition amplitude): 

ΩΩΩΩ
ρρρρρρρρ

σσσσ d
v

W
d

21

fi ⋅⋅⋅⋅==== �                                                                                             (5.1) 

where  

• Wfi is the transition probability per unit time: 
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• The density of initial states: 

              
221 V

v
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• dΩ  je počet konečných stavov: 
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After putting the (5.3-5) into (5.2) we get: 
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Analogically for the decay rate ( A → 1+2+…+n): 
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Two particle phase space 

In case of the 2-particle final state phase space (after inclusion δ-function) we have: 
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       (5.7) 

where m3 and m4 are the masses of output particles and P = p1 + p2 is the full momentum 

of input particles. 

We used the properties of δ-function: 
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∑∑∑∑∫ ∫∫ ∫∫ ∫∫ ∫                                             (5.8) 

Where xi are the zero points of the function f(x) 
 

After integrating (5.7) through 4
4 pd  and the subsequent integration through 0

3dp  we get: 
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After going to spherical coordinates ( ϕϕϕϕθθθθ dddpppd 2
3

3 cos==== , 
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where bc2ac2ab2cbacba 222 −−−−−−−−−−−−++++++++====),,(λλλλ  


