Spinor field - Dirac equation ver 23. 11. 2007

The Dirac equation (DR) describes classical spiietst and the quanta of this field
are particles of spin %2 - similarly as photons espnt quanta of electromagnetic
field. Such particles (s = %2) are characterizgd b

x=(t,x) . p=(E.p), s(=-%.%), e

charge

4-vector of position 4-momentum spin projection
The form of DR:
(iy*a, -m)w(x)=0 (1a)
i0,#(x) y*+m¥(x)=0 (1b)
where
1 0 0 &
Y = y= d,=(0,,0) (2)
0 - -g 0

Yx) is the 4-component spinor af= W*)° is the Dirac-conjugated spinor and

d=(0,,0,,0,) are Pauli matrices (see Appendix A).

Current density and equation of continuity

The current density for particle of spin %2 and geatereads:

jU(x)=-e¥(x) y*¥(x) 3)
and fulfills the continuity equation:

0,j#(x)=0 (4)
The solution of DR for free particle with momentuymand spin 1/2 can be expressed
in the form

¥, (x) = u(P)exp(=ipx) (5)
Where 4-component spinai( p) fulfills equation

(v p, ~m)u(p)=0 (6)

For free particle with momenturp EQq. (6) hagl independent solutions:

Two solutions withE > 0and two solutions witk <0

The solutions with positive energgoE E > 0):



¢ 1 0
) (p) = - P = @ = @ =
ut@ =N g | 112 ¢ . ¢ . (72)
E+m
The solutions with negative energy € —E <0) are:
_5'D-5 (i)
. — 1 0
W(p=N|E+m* |i=34 )(<3>=( J )((“)=( ] (7b)
X
WhereN is the normalization constant (characterizes gartiensity — see (3)).

Interpretation of the solutions: in state with maruen p particle acquires

energy#E (= PP+ mz) (- E corresponds to anti-particle), and in both capes s

projection can acquire two value with opposite(simented in direction of motion

and against it).
On the solution of Dirac equation

First 2 solutionm(l'z)(f)) e™' P* describes electron with enerGyand momentun.

The next 2 solutions®* (p)e™P* negative energy corresponds to positron.
However a positron with energi and momentunp will be described by the
solution for electron with-E and - P, therefore one can write:

UG (-p)e P =y@D () el P .1
The change of index orde(3,4) - (2,1) follows from the fact that the simultaneous

change of direction of spin and momentum will noarge helicity (1/2) a0p).

As the change of index order changes directiorpwof, she positron would have not
only opposite momentum but also spin (if comparéti electron) , however if we
make a replacement-3 and 4- 1 , both the positron and electron will have dedin

helicity in the same way.

The DR for spinorau(p) andv(p) evidently reads:

(P-m)um=0, (P+rm (D= 0kde "Ey* p (7.2)



Normalizationof spinor function is important for the correct@®hination of relation
between cross section and process amplitudigually it is done for:

* 1 one particle in unit volume,

e 2E in unit volume.

Such a choice leads to the following values ofrtbamalization constant N:

[ pv=foy av=uusl . NTYEIT 73)
= =utu= - .
unitvol 1 N=VvE+ m/\/ﬁ

Relation of completenessThese relations are very important at calculatibn o

amplitude:

2. u@(PUu(p=p+m

s=12

D VOV (P =P m

s=12

(7.4)

Weyl's representation ofy-matrices and solution of DR

The structure of-matrices in this representation is the following:

01 (0 -o 1 0
10 g 0 0 -

The field function we will write as follows:

78
w{ J | 7
A

Wherey, ay, are 2-component spinors.
The DR has got in this case the form:
—m R+ 0P\ (e
(v'p,-mp=0 = ) =0, (7.7)
Po -0 -m Y,

and gives the following solutions:



¢’R - wL
m

w =20y,
m

An interesting case occurs@t= 0. In this casay, ay, are eigenstates @ [ -
operator (is proportional projection of spin toedition of motion):

ODY. =y, a Y =-ny,

In relativistic caseone can write
W, is big (@ >y, ) for >0 and po >0

@, is big (¢, > yy) for 6P <0 andpy >0

In ultra-relativistic case&r [P/ p, =ﬁ|:lf) is operator of helicity and indexes R and L

correspond to the right and left solutions of Dé&spectively.

Interaction of particle of spin %2 with electromagnéic field

The equation of motion for particle of spin %2 inreatomagnetic field we get
from Dirac equation by the replacemept: - p¥ —QeA, whereQ is charge of

particle expressed in elementary charggg (or electronQ = -1). For electron one

gets:
(v -mlg=yVg, yV=-g, A (8)
Y is taken out oV to get at transition to the non-relativistic caie Schrodinger
equation. The equation (8) we solve in an analdgicy as in the case of particle
with spin 0 by using the perturbative method.
The solution in the first order of perturbativetmod can be demonstrated by

the case o scattering.

Rozptyley - e

Let us treat scattering of @& with 4-momentunk on muon with 4-momentum (see

Fig. 1). The perturbative method gives for the elementrafdition from initial to

final state:T, = =i j W (XV (X dx = —ij (-e)@; (X)y 4 A“(x)dx.



If we look at this problem in such a way that thecton undergoes a scattering in the

potential created by muon for tleg-scattering we get:

k s, - k‘e" Initial state: |i)=|ks,, ps,)

's;)

Final state: |f)=

Amplitude of transition:

T, =-i J(e)(X)(-—]J 4 (x)dx =
I q (m) (9)

=-i(2m) 3Kk +p-Kk' - p') M,

S' where
P S P S: J(I) I, y*y, = —el, y*u, e'(Pf—p.)X

Fig. 1. Scattering of electron on muon.

The matrix elemer¥y (after putting the expression for current into B)) reads:
e 1
M, =-e’u(k',g) y*u(k, §)Elq—2|:rt( B %) ¥, Ups) (10)

And we will interested in the non-polarized crosstin, i.e. we will suppose that in

the initial state both electron and muon will acquith the same probability the two
values of spin projection adN’l ﬁ‘ will be averaged through the initial states and

summed through the final spin states.
2 mu
M| -q i Y (11)
Where

Lt = za(k',s;)y”u(k, s)ffu(k, §)7 uk 5)
253 (12)

=5 Tr[(em) y(kem) p] k=i
It is easily to shOV\(ui =u(k,s))au, = u(k', q)) that
(T ) =(uwyru) =wy yu =yyyu =tayy

or y*y° = y°y” (see properties gfmatrices).



Lélevl)_ ;Uf “u, [y u, =_;Z;,Ufyﬂ(l2+m)yvuf =
__ZU ( (k+m)y") uf == g(uf ( (k+m)y")

=5l o) Gy ) =g sy (ke
(12)

Where we used the completeness relatiods:u, T, =k +m
5,=1,2

A similar expression is valid fdj‘ﬂ”:,”) . For calculation of process matrix element is

needed to figure out the trace of a produgt-ofatrices.

=2 [y iy | = e [y 1 T ] a9

Using the relations for traces gfmatrices (see appendix A):

Tty ]=2(g g - P g+ ¢ ¢%), Ty ]= 2¢

We get:

L =2(k'“k" = (k' K) g™ + K"Kk + m? g ) (14)

And analogically for muon tensor we get:

Litmuon _Z(p'” P’ _( p'I:Ip) g+ P g+ M g"’) (15)

Using EqQ. (11) it leads us to the result
I l2 8 N I U I U U I
M =q—e4|:[(k 0P’k 0p) + (k' C)(k ) - m2(p' ) - M 2(K' k) + 2m2M 2] (16)
wherem (M) is mass of electron (muon).
Recipe for construction of matrix element

Amplitude (matrix element) offescattering we can express as follows:

M, =—ia(k',s;)(—iey”)um,sl)m_ij’%m(p,s) (-e’)ups @7



If we assign the factors to the individual partéhef diagram oéuscattering as is

shown in Fig. 2, the process matrix element caedsdy found.

W (L, %) (i %)

M (P—;': %2 wp'e!
P1s)
Fig. 2: Electron - muon scatering - e and are exchanging a virtual photon.

Hence for construction of a process matrix elemenheed to assign to:
Interaction vertex = —iey,
Input particle with spin %2 = u(p,s)
Output particle with spin %2 = U(p, s)
—ig”"
q2

Propagator of photon =

Scattering of ep” — e 4 in laboratory system

Let us consider the g™ scattering in laboratory system (LS) — as is showiig. 3.



In LS muon is in a restp = (M ,6) , We

know the state of motion of the incident
eIectron(E,lZ) and experimentally we

measure the energy of output electron

(E’) and angle of his declination from

the original direction @).

Fig. 3: The e+ scattering in lab. system

If we come from the general formula feg-scattering (16), we neglect the terms
proportionalm? (m=mass of electron) and use the approximation:
, 6

q? = -2k [k' = —2EE’' (1- cosf) = ~4EE' Bin® ~ : (18)
And for the square of matrix elemévit module one gets:
2
‘M ﬁ‘z §2M 2Eg"] cog & -0 sng (19)
q* 2 2M°*? 2

The cross section reads:

1\2 2 2
do _ (me ) cos?g——q - SinZQ v+ (20)
dEdQ g 2 M2 2 oM

wherea=e*/4m v=E-E'.
Or if we are interested only in the angle of scatleslectron:
2 [ 2
do__ a E E{coszg— g sinzﬁ} (21)

2
dQ 4E Smuz E 2 2M 2

The formulae for the scattering cross section oftplke particles (20) and (21) are
very important, because a deviation from the lavea#ttering of point-like particles
indicates the presence of a non-discrete structurence it provide us with an
information about structure of particles.
Remark. If instead of muon we would take point-like padiaevith spin O, the cross
section for scattering to angl@ would read:

do _ a’ E'

de 4E sm“g

6
[@os > (22)



From comparison of the relations (21) and (223 wlvious that the term containing
sinf@2 v (21) arises as a consequence arises of eleatattesng on spin (magnetic

moment) of muon.
Comparison of scattering of particle with spin O di%

The scattering matrix element is, for both the sasepresented by formally the same
relation:

Ty =i [dxj; () A#(x)
The difference is in the structures of their eleetagnetic currents. Particles with spin
0 interacts with electromagnetic field exclusivéifyough the charge and structure

of current (transition of particle from the stgieto stateg ) reads

is)=eNN(p +p,) @™ (23)
In case of particle spin ¥z the structure of currgiie following:
J:ll (x) =-eu, y*u e (24)

Using Gordon expansion we get:

2m e =y -yyt) (29)

We see that in the case of particle with spin Baddition to interaction through
charge~(pr+p;) there is also an interaction corresponding taeh®a o*“q,. This

term describes the interaction through magnetic exdrof electronu:
fi=-,0=-g_—$ (26)

WhereS = §/2ag=2is gyromagnetic factor.

Hence electron (particle with spin 1/2) interactghwvelectromagnetic field not only

through its charge but also through magnetic moment

Remark.For understanding of the fact that the second termin (25) represents
interaction of magnetic moment, it is taken into account the following:

* (, =0 dueto the energy conservation law (E, = E;)



R 7 2 O

« Spacepart of o#'is o’ =& i,j=123
0 o

» Take only the upper components of the field functions:

@' (x) (=u' (p)expEip x) ag' (x).

Appendix A. Algebra ofgmatrices — their basic properties

Fundamental anti-commutator:

{y",y"}=Zg”", g” = metric tensor (A1)
y-matrices in the standard representation:
. 1 0 ~ 0 &g o 12 s 0 1
y = y= Vs Elyyyy = (A.2)
0 - -0 O 10
where

0 1 0 -i 1 0
=(o,0,0,) , al=( ] az={ J 03={ J (A.3)
10 i 0 0 -1

From the definitiony or from its explicit expression it follows:
{royrf=0,  yi=1 (A.4)
And also is valid:

_ +1 even combinations 0,1,2,
[ o
A Emswpay“y"y"y", £,,0 =1 —1 odd combinations 0,1,2,3  (A.5)
0 2 and identical indexes

At calculation of Feynmann diagrams it is oftenadexzbto use the following

properties of traces ofy:matrices products
Tr( vy’ ) = 49*
() = alergT g - ¢ ¢ ]
T (1, ”y"y"y") 4ighe
Tr( )

Tr {yﬂ y”] =
neparné

And is also valid &=a, y*):

(A.6)

0



yﬂéﬁ y* =4al (A.7)

ab = 2(ab) -ba
Appendix B Gordon expansion

Electromagnetic current evoked by transition oteten form the statéi) to | )

We can decompose to components:

(pf + pi)u _iU”quJ

u, 1B

~el =—eUf[ 2m 2m

where g# =‘;(y”y" -y”y”)-
Let us begin with
iU, (a-/”qv)ui =-1T, (y“y" —V”V“)Ua

_%Ufy'uyv(pf)vui +%Ufyvyﬂ(pf)vui

2.
Vi Vs
+%Ufyﬂyv(pi)yui _%Ufyvyﬂ(pi)yui
Vs Vi
The terms ¥ and \4 we can easily adjust using the Dirac equation:
V, =3U; py U, =3mu, yhuy, (Uf p; =mu, ) (B.3)
Vy =30,y pu =3mu, yHy, (ﬁl i =mui) (B.4)
For the terms Yand V4 it is needed to usg#y” + y"y* =2g*
Vo ==3u, (v + 207 o, ) u = 3u v (p ), viu, U, pfu, =
(B.5)
= $mu, y u, - U, pfy
Vy==10, -y +20" Kp),u, =30, /#(p), ¥ u - T, ptu, = 86
B.6

= 3mu;y*u, =T, pfuy,
Hence for B.2 using (A3-6) we get:
Ufia-w(pf - b )l, =V, +V, +V; +V, =2mu; yﬂui —Uq (pi + Py )ﬂui (B.7)

From this we get the B.1.



Electromagnetic field - photon

The equations of motion for the electromagnetiltfaae the Maxwell equations:

aﬂF”"=j" a aﬂF”"=O (1)
Where
~w _1
F A —Ee‘“"’”Fw

0 -E, -E, -E,

E, 0O -B, B @)
1 3 2

E, B, 0 -B,

E, -B, B, O

Fm =g#AY —9" A¥ =

F# is the tensor of electromagnetic field = (¢,A) is the 4-potencial an& *is
the dual tensor of electromagnetic field.
The explicit expression df #leads to the Maxwell equation for 4-potencial:

"0, A -a#(a, A" )= j# (3)
or

(970,0"-0%0") A, = )
The potential A exhibits gauge degree of freedom that consist & féct that
physically are measurable the intensity of eledteid E and induction magnetic field

B that are defined as follows:
E=-——-0¢, B=0OxA (5)

The quantitie£, B will not change if we make the gauge transformafigpotencial
AH
A - A=A +0,x (6)
wherey is an arbitrary function differentiable in th& 2lerivatives. Hence the whole
class of potentials leads to the same configuratibrelectromagnetic field. This
enables us to choog€ in such a way that the Lorentz condition is fudfill
09, A“=j# at 9,A"=0 (7

Additional freedom If potential A fulfills the Lorentz condition it is still not

determined by this condition unambiguously. If veetg an other potential



A, A=A+, (8)
where A fulfills condition 9,0“A=0. It is clear that ifA, fulfills the Lorentz

condition then it fulfills als@\,. Hence, also after fulfillment of Lorentz conditio
there is still a freedom in the choice of descoptof electromagnetield.
Let us consider electromagnetic field without cleasgurces (free field - free photon)
9,0"A, =0 ()
The solution for free field is:
A#(x) = £#(q) [exp(-igx) (10)
whereegis 4-vector of polarization @4-momentum carried by field (photon).
The important moments:

« For the solution (10) from Eq. (9) follows? = 0- this corresponds to zero mass

of photons.
« Lorentz conditiond, £=0) and additional freedom (8) enable to choose (tiaien
A# | in such a way that the vector polarization re@gls 0and hence:
£LG=0 (11)
This means that electromagnetic field is polarizadsversally and the vector of
polarization has two independent components,hieebtise of vector of polarization
contains 2 elementg™®, A= 12

In general the free electromagnetic field is désct by the potential:
_ dg 2, oo o s
AX) = | =D V(@) Ty’ (G)e™ +a5” (G)e™ (12)
J (27) ZCIJ/IZ:L e, ’ )
whereq = (a), ﬁ) and two terms in (...) correspond to solution widsipive and

negative energy (frequency)’ = i\/CTZ =tw (hencewis defined positively).



Energy electromagnetic field

s <Sfosder s douda ) el

) e o (14)
_w( d% al”(g)a” (d) +a}” (d)a’(q)
) ;I (2ny m%{ 20 J

0

where--- represents density of photons (waves) with enefrgsquency)w=|€]| in

[
O

the system of electromagnetic field.

Conclusion.Electromagnetic field is possible to interpretwo ways:
« throughE andB (intensity of electric field and magnetic field),

* as a system of photons (quanta of field).



