The Dirac equation (DR) describes classical spinor field and the quanta of this field are particles of spin $\frac{1}{2}$ - similarly as photons represent quanta of electromagnetic field. Such particles ($s = \frac{1}{2}$) are characterized by:

$$x \equiv (t, \vec{x})$$
, $p \equiv (E \cdot \vec{p})$, $s_z = (-\frac{1}{2}, \frac{1}{2})$, exprint spin projection charge

The form of DR:

$$(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x) = 0 \tag{1a}$$

$$i\partial_{\mu}\bar{\Psi}(x) \quad \gamma^{\mu} + m\bar{\Psi}(x) = 0 \tag{1b}$$

where

$$\gamma^{\theta} = \begin{pmatrix} 1 & \theta \\ \theta & -1 \end{pmatrix} \vec{\gamma} = \begin{pmatrix} \theta & \vec{\sigma} \\ -\vec{\sigma} & \theta \end{pmatrix} \partial_{\mu} \equiv (\partial_{t}, \nabla)$$
 (2)

 $\Psi(x)$ is the 4-component spinor and $\overline{\Psi} = \Psi^+ \gamma^0$ is the Dirac-conjugated spinor and $\vec{\sigma} \equiv (\sigma_1, \sigma_2, \sigma_3)$ are Pauli matrices (see Appendix A).

Current density and equation of continuity

The current density for particle of spin $\frac{1}{2}$ and charge -e reads:

$$j^{\mu}(x) = -e\,\overline{\Psi}(x)\,\gamma^{\mu}\,\Psi(x) \tag{3}$$

and fulfills the continuity equation:

$$\partial_{u}j^{\mu}(x) = 0 \tag{4}$$

The solution of DR for free particle with momentum \vec{p} and spin 1/2 can be expressed in the form

$$\Psi_{\vec{p}}(x) = u(\vec{p}) \exp(-ipx) \tag{5}$$

Where 4-component spinor $u(\vec{p})$ fulfills equation

$$\left(\gamma^{\mu} p_{\mu} - m\right) u(\vec{p}) = 0 \tag{6}$$

For free particle with momentum \vec{p} Eq. (6) has 4 independent solutions:

Two solutions with E > 0 and two solutions with E < 0

The solutions with positive energy ($p_0 = \mathbf{E} > \mathbf{0}$):

$$u^{(i)}(\vec{p}) = N \begin{pmatrix} \boldsymbol{\varphi}^{(i)} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \boldsymbol{\varphi}^{(i)} \end{pmatrix} \quad i = 1, 2 \qquad \boldsymbol{\varphi}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \boldsymbol{\varphi}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(7a)

The solutions with negative energy $(p_0 = -\mathbf{E} < 0)$ are:

$$u^{(i)}(\vec{p}) = N \left(\frac{-\vec{\sigma} \cdot \vec{p}}{E + m} \chi^{(i)} \right) \quad i = 3, 4 \quad \chi^{(3)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \chi^{(4)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (7b)

Where N is the normalization constant (characterizes particle density – see (3)).

Interpretation of the solutions: in state with momentum \vec{p} particle acquires energy $\pm E \left(= \sqrt{\vec{p}^2 + m^2}\right)$ (-E corresponds to anti-particle), and in both cases spin projection can acquire two value with opposite sin (oriented in direction of motion and against it).

On the solution of Dirac equation

First 2 solutions $\boldsymbol{u}^{(1,2)}(\vec{p}) e^{-ipx}$ describes electron with energy \boldsymbol{E} and momentum \vec{p} . The next 2 solutions $\boldsymbol{u}^{(3,4)}(\vec{p}) e^{-ipx}$ negative energy corresponds to positron. However a positron with energy \boldsymbol{E} and momentum \vec{p} will be described by the solution for electron with $-\boldsymbol{E}$ and $-\vec{p}$, therefore one can write:

$$u^{(3,4)}(-\vec{p})e^{-i(-p)x} \equiv v^{(2,1)}(\vec{p})e^{ipx}$$
(7.1)

The change of index order: $(3,4) \rightarrow (2,1)$ follows from the fact that the simultaneous change of direction of spin and momentum will not change helicity ((1/2) $\vec{\sigma} \cdot \vec{p}$). As the change of index order changes direction of spin, the positron would have not only opposite momentum but also spin (if compared with electron), however if we make a replacement $3\rightarrow 2$ and $4\rightarrow 1$, both the positron and electron will have defined helicity in the same way.

The DR for spinors $u(\vec{p})$ and $v(\vec{p})$ evidently reads:

$$(\hat{p}-m)u(\vec{p})=0$$
, $(\hat{p}+m)v(\vec{p})=0$ kde $\hat{p} \equiv \gamma^{\mu}p_{\mu}$ (7.2)

Normalization of spinor function is important for the correct determination of relation between cross section and process amplitude – usually it is done for:

- 1 one particle in unit volume,
- 2E in unit volume.

Such a choice leads to the following values of the normalization constant N:

$$\int_{unitVol} \rho dV = \int \psi^+ \psi \ dV = u^+ u = \begin{cases} 2E & N = \sqrt{E+m} \\ 1 & N = \sqrt{E+m} / \sqrt{2E} \end{cases}$$
 (7.3)

Relation of completeness. These relations are very important at calculation of amplitude:

$$\sum_{s=1,2} u^{(s)}(p)\overline{u}^{(s)}(p) = \hat{p} + m$$

$$\sum_{s=1,2} v^{(s)}(p)\overline{v}^{(s)}(p) = \hat{p} - m$$
(7.4)

Weyl's representation of γ-matrices and solution of DR

The structure of γ -matrices in this representation is the following:

$$\gamma^{\rho} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \gamma^{i} = \begin{pmatrix} 0 & -\sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \quad \Rightarrow \quad \gamma^{5} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$
(7.5)

The field function we will write as follows:

$$\boldsymbol{\psi} = \begin{pmatrix} \boldsymbol{\psi}_R \\ \boldsymbol{\psi}_L \end{pmatrix} . \tag{7.6}$$

Where ψ_R a ψ_L are 2-component spinors.

The DR has got in this case the form:

$$(\gamma^{\mu} p_{\mu} - m) \psi = 0 \implies \begin{pmatrix} -m & p_{\theta} + \vec{\sigma} \cdot \vec{p} \\ p_{\theta} - \vec{\sigma} \cdot \vec{p} & -m \end{pmatrix} \begin{pmatrix} \psi_{R} \\ \psi_{L} \end{pmatrix} = 0,$$
 (7.7)

and gives the following solutions:

$$\psi_R = \frac{p_0 + \vec{\sigma} \cdot \vec{p}}{m} \psi_L$$

$$\psi_L = \frac{p_0 - \vec{\sigma} \cdot \vec{p}}{m} \psi_R$$

An interesting case occurs at m = 0. In this case ψ_R a ψ_L are eigenstates of $\vec{\sigma} \cdot \vec{p}$ operator (is proportional projection of spin to direction of motion):

$$\vec{\sigma} \cdot \vec{p} \psi_R = p_0 \psi_R$$
 a $\vec{\sigma} \cdot \vec{p} \psi_L = -p_0 \psi_L$

In relativistic case one can write:

$$\psi_R$$
 is big $(\psi_R \gg \psi_L)$ for $\vec{\sigma} \cdot \vec{p} > 0$ and $p_\theta > 0$

$$\psi_L$$
 is big $(\psi_L \gg \psi_R)$ for $\vec{\sigma} \cdot \vec{p} < 0$ and $p_\theta > 0$

In ultra-relativistic case $\vec{\sigma} \cdot \vec{p}/p_{\theta} = \vec{\sigma} \cdot \hat{\vec{p}}$ is operator of helicity and indexes R and L correspond to the right and left solutions of DR, respectively.

Interaction of particle of spin ½ with electromagnetic field

The equation of motion for particle of spin ½ in electromagnetic field we get from Dirac equation by the replacement: $p^{\mu} \rightarrow p^{\mu} - QeA^{\mu}$, where Q is charge of particle expressed in elementary charges (e) (for electron Q = -I). For electron one gets:

$$(\gamma_{\mu}p^{\mu} - m)\psi = \gamma^{0}V\psi, \qquad \gamma^{0}V = -e\gamma_{\mu}A^{\mu}$$
(8)

 p^{0} is taken out of V to get at transition to the non-relativistic case the Schrodinger equation. The equation (8) we solve in an analogical way as in the case of particle with spin 0 by using the perturbative method.

The solution in the first order of perturbative method can be demonstrated by the case of $e\mu$ -scattering.

Rozptyl $e^-\mu^- \rightarrow e^-\mu^-$

Let us treat scattering of an e^- with 4-momentum k on muon with 4-momentum p (see Fig. 1). The perturbative method gives for the element of transition from initial to final state: $T_{fi} = -i \int \psi_f^+(x) V(x) \psi_i dx = -i \int (-e) \overline{\psi}_f(x) \gamma_\mu \psi_i A^\mu(x) dx$.

If we look at this problem in such a way that the electron undergoes a scattering in the potential created by muon for the $e\mu$ -scattering we get:

Fig. 1: Scattering of electron on muon.

The matrix element M_{fi} (after putting the expression for current into Eq. (9)) reads:

$$\boldsymbol{M}_{fi} = -e^2 \overline{u}(k', s_1') \quad \boldsymbol{\gamma}^{\mu} u(k, s_1) \cdot \frac{1}{q^2} \cdot \overline{u}(p', s_2') \quad \boldsymbol{\gamma}_{\mu} u(p, s_2)$$
 (10)

And we will interested in the non-polarized cross section, i.e. we will suppose that in the initial state both electron and muon will acquire with the same probability the two values of spin projection and $\left|M_{fi}\right|^2$ will be averaged through the initial states and summed through the final spin states.

$$\overline{\left|\boldsymbol{M}_{fi}\right|^{2}} = \frac{e^{4}}{q^{4}} \cdot \boldsymbol{L}_{(el)}^{\mu\nu} \, \boldsymbol{L}_{\mu\nu}^{(mu)} \tag{11}$$

Where

$$L_{(el)}^{\mu\nu} = \frac{1}{2} \sum_{s_{I}s'_{I}} \overline{u}(k', s'_{I}) \gamma^{\mu} u(k, s_{I}) \cdot \left(\overline{u}(k', s'_{I}) \gamma^{\nu} u(k, s_{I}) \right)^{*}$$

$$= \frac{1}{2} Tr \left[\left(\hat{k}' + m \right) \gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} \right], \quad \hat{k} = k_{\alpha} \gamma^{\alpha}$$
(12)

It is easily to show $(u_i \equiv u(k, s_i))$ a $u_f \equiv u(k', s_i')$ that

$$\begin{split} \left(\overline{u}_{f}\gamma^{\nu}u_{i}\right)^{*} &= \left(u_{f}^{+}\gamma^{0}\gamma^{\nu}u_{i}\right)^{+} = u_{i}^{+}\gamma^{\nu+}\gamma^{0}u_{f} = u_{i}^{+}\gamma^{0}\gamma^{\nu}u_{f} = \overline{u}_{i}\gamma^{\nu}u_{f} \\ \text{or } \gamma^{\nu+}\gamma^{0} &= \gamma^{0}\gamma^{\nu} \quad \text{(see properties of } \gamma\text{-matrices)}. \end{split}$$

$$L_{(el)}^{\mu\nu} = \frac{1}{2} \sum_{s_i s_i'} \overline{u}_f \gamma^{\mu} u_i \cdot \overline{u}_i \gamma^{\nu} u_f = \frac{1}{2} \sum_{s_i'} \overline{u}_f \gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} u_f =$$

$$= \frac{1}{2} \sum_{s_i'} \left(\overline{u}_f \right)_i \left(\gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} \right)_{ij} \left(u_f \right)_j = \frac{1}{2} \sum_{s_i'} \left(u_f \right)_j \left(\overline{u}_f \right)_i \left(\gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} \right)_{ij} =$$

$$= \frac{1}{2} \left(\hat{k}' + m \right)_{ji} \left(\gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} \right)_{ij} = \frac{1}{2} Tr \left[\left(\hat{k}' + m \right) \gamma^{\mu} \left(\hat{k} + m \right) \gamma^{\nu} \right]$$

$$(12)$$

Where we used the completeness relations: $\sum_{s_i=1,2} u_i \overline{u}_i = \hat{k} + m$.

A similar expression is valid for $L_{\mu\nu}^{(mu)}$. For calculation of process matrix element is needed to figure out the trace of a product of γ -matrices.

$$L_{(el)}^{\mu\nu} = \frac{1}{2} Tr \left[\hat{k}' \gamma^{\mu} \hat{k} \gamma^{\nu} + m^{2} \gamma^{\mu} \gamma^{\nu} \right] = \frac{k_{\alpha}' k_{\beta}}{2} Tr \left[\gamma^{\alpha} \gamma^{\mu} \gamma^{\beta} \gamma^{\nu} \right] + \frac{m^{2}}{2} Tr \left[\gamma^{\mu} \gamma^{\nu} \right]$$
(13)

Using the relations for traces of γ -matrices (see appendix A):

$$Tr \left[\gamma^{\alpha} \gamma^{\mu} \gamma^{\beta} \gamma^{\nu} \right] = 2 \left(g^{\alpha \mu} g^{\beta \nu} - g^{\alpha \beta} g^{\mu \nu} + g^{\alpha \nu} g^{\mu \beta} \right), \qquad Tr \left[\gamma^{\mu} \gamma^{\nu} \right] = 2 g^{\mu \nu}$$

We get:

$$L_{(el)}^{\mu\nu} = 2(k'^{\mu}k^{\nu} - (k' \cdot k)g^{\mu\nu} + k'^{\nu}k^{\mu} + m^{2}g^{\mu\nu})$$
(14)

And analogically for muon tensor we get:

$$L_{(muon)}^{\mu\nu} = 2 \left(p'^{\mu} p^{\nu} - (p' \cdot p) g^{\mu\nu} + p'^{\nu} p^{\mu} + M^{2} g^{\mu\nu} \right)$$
 (15)

Using Eq. (11) it leads us to the result

$$\overline{\left|\boldsymbol{M}\right|^{2}} = \frac{8e^{4}}{q^{4}} \cdot \left[(\boldsymbol{k'} \cdot \boldsymbol{p'})(\boldsymbol{k} \cdot \boldsymbol{p}) + (\boldsymbol{k'} \cdot \boldsymbol{p})(\boldsymbol{k} \cdot \boldsymbol{p'}) - m^{2}(\boldsymbol{p'} \cdot \boldsymbol{p}) - M^{2}(\boldsymbol{k'} \cdot \boldsymbol{k}) + 2m^{2}M^{2} \right]$$
(16)

where m (M) is mass of electron (muon).

Recipe for construction of matrix element

Amplitude (matrix element) of eu-scattering we can express as follows:

$$M_{fi} = -i\overline{u}(k', s_1') \left(-ie\gamma^{\mu}\right) u(k, s_1) \cdot \frac{-ig_{\mu\nu}}{q^2} \cdot \overline{u}(p', s_2') \left(-ie\gamma^{\nu}\right) u(p, s_2)$$
 (17)

If we assign the factors to the individual parts of the diagram of $e\mu$ -scattering as is shown in Fig. 2, the process matrix element can be easily found.

Fig. 2: Electron - muon scatering - e and μ are exchanging a virtual photon.

Hence for construction of a process matrix element we need to assign to:

Interaction vertex $\Rightarrow -ie\gamma_{\mu}$ Input particle with spin $\frac{1}{2}$ $\Rightarrow u(\vec{p},s)$ Output particle with spin $\frac{1}{2}$ $\Rightarrow \bar{u}(\vec{p},s)$ Propagator of photon $\Rightarrow \frac{-ig^{\mu\nu}}{g^2}$

Scattering of $e^-\mu^- \rightarrow e^-\mu^-$ in laboratory system

Let us consider the $e^-\mu^-$ scattering in laboratory system (LS) – as is shown in Fig. 3.

In LS muon is in a rest: $p = (M, \vec{0})$, we know the state of motion of the incident electron (E, \vec{k}) and experimentally we measure the energy of output electron (E') and angle of his declination from the original direction (θ) .

Fig. 3: The eu-scattering in lab. system

If we come from the general formula for $e\mu$ -scattering (16), we neglect the terms proportional m^2 (m = mass of electron) and use the approximation:

$$q^{2} \approx -2k \cdot k' = -2EE'(1 - \cos\theta) = -4EE' \cdot \sin^{2}\frac{\theta}{2}$$
 (18)

And for the square of matrix element M_{fi} module one gets:

$$\overline{\left|M_{fi}\right|^{2}} = \frac{8e}{q^{4}} 2M^{2} E E' \left\{ \cos^{2} \frac{\theta}{2} - \frac{q^{2}}{2M^{2}} \sin^{2} \frac{\theta}{2} \right\}$$
 (19)

The cross section reads:

$$\frac{d\sigma}{dE'd\Omega} = \frac{(2\alpha E')^2}{q^4} \left\{ \cos^2 \frac{\theta}{2} - \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2} \right\} \cdot \delta \left(\nu + \frac{q^2}{2M} \right)$$
 (20)

where $\alpha = e^2/4\pi$, v = E - E'.

Or if we are interested only in the angle of scattered electron:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \cdot \left\{ \cos^2 \frac{\theta}{2} - \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2} \right\}$$
(21)

The formulae for the scattering cross section of point-like particles (20) and (21) are very important, because a deviation from the law of scattering of point-like particles indicates the presence of a non-discrete structure, hence it provide us with an information about structure of particles.

Remark. If instead of muon we would take point-like particle with spin 0, the cross section for scattering to angle θ would read:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \cdot \cos^2 \frac{\theta}{2}$$
 (22)

From comparison of the relations (21) and (22) it is obvious that the term containing $\sin^2 \theta/2$ v (21) arises as a consequence arises of electron scattering on spin (magnetic moment) of muon.

Comparison of scattering of particle with spin 0 and 1/2

The scattering matrix element is, for both the cases, represented by formally the same relation:

$$T_{fi} = -i \int dx j_{\mu}^{fi}(x) \cdot A^{\mu}(x)$$

The difference is in the structures of their electromagnetic currents. Particles with spin 0 interacts with electromagnetic field exclusively through the charge e and structure of current (transition of particle from the state ϕ_i to state ϕ_f) reads

$$j_{\mu}^{fi}(x) = eN_i N_f \left(p_i + p_f \right)_{\mu} \cdot e^{=iqx}$$
(23)

In case of particle spin ½ the structure of current is the following:

$$j_{\mu}^{fi}(x) = -e\overline{u}_{f} \gamma^{\mu} u_{i} e^{-iqx}$$
(24)

Using Gordon expansion we get:

$$-e\overline{u}_{f}\gamma^{\mu}u_{i} = -e\overline{u}_{f}\left(\frac{\left(p_{f} + p_{i}\right)^{\mu}}{2m} - i\frac{\sigma^{\mu\nu}q_{\nu}}{2m}\right)u_{i}, \qquad \sigma^{\mu\nu} = \frac{i}{2}\left(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}\right) \quad (25)$$

We see that in the case of particle with spin $\frac{1}{2}$, in addition to interaction through charge $\sim (p_f + p_i)$ there is also an interaction corresponding to the term $\sigma^{\mu\nu}q_{\nu}$. This term describes the interaction through magnetic moment of electronu:

$$\vec{\mu} = -\frac{e}{2m}\vec{\sigma} = -g\frac{e}{2m}\vec{S} \tag{26}$$

Where $\vec{S} = \vec{\sigma}/2$ a g=2 is gyromagnetic factor.

Hence electron (particle with spin 1/2) interacts with electromagnetic field not only through its charge but also through magnetic moment!

Remark. For understanding of the fact that the second term in (25) represents interaction of magnetic moment, it is taken into account the following:

• $q_0 = 0$ due to the energy conservation law ($E_i = E_f$)

• Space part of
$$\sigma^{\mu\nu}$$
 is $\sigma^{ij} = \varepsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}$ $i, j = 1, 2, 3$

• Take only the upper components of the field functions: $\psi^{i}(x) = u^{i}(p) \exp(-ip_{i}x)$ a $\psi^{f}(x)$.

Appendix A. Algebra of \(\gamma \) matrices – their basic properties

Fundamental anti-commutator:

$$\left\{ \gamma^{\mu}, \gamma^{\nu} \right\} = 2g^{\mu\nu}, \quad g^{\mu\nu} \equiv \text{ metric tensor}$$
 (A.1)

γ-matrices in the standard representation:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \qquad \vec{\gamma} = \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \qquad \gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \tag{A.2}$$

where

$$\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3) \quad , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(A.3)

From the definition γ or from its explicit expression it follows:

$$\left\{ \gamma_{5}, \gamma^{\mu} \right\} = 0, \qquad \gamma_{5}^{2} = 1 \tag{A.4}$$

And also is valid:

$$\gamma_{5} \equiv \frac{i}{4!} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}, \qquad \varepsilon_{\mu\nu\rho\sigma} = \begin{cases} +1 \text{ even combinations } 0,1,2,3\\ -1 \text{ odd combinations } 0,1,2,3\\ 0 \text{ 2 and identical indexes} \end{cases}$$
(A.5)

At calculation of Feynmann diagrams it is often needed to use the following *properties of traces of \(\gamma \) matrices products:*

$$Tr\left(\gamma^{\mu}\gamma^{\nu}\right) = 4g^{\mu\nu}$$

$$Tr\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\right) = 4\left[g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho} - g^{\mu\nu}g^{\rho\sigma}\right]$$

$$Tr\left(\gamma_{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\right) = 4i\varepsilon^{\mu\nu\rho\sigma}$$

$$Tr\left(\gamma_{5}\gamma^{\mu}\gamma^{\nu}\right) = 0$$

$$Tr\left(\frac{\gamma^{\mu}\cdots\gamma^{\sigma}}{neparn\acute{e}}\right) = 0$$
(A.6)

And is also valid $(\hat{a} \equiv a_{\mu} \gamma^{\mu})$:

$$\gamma_{\mu}\gamma^{\mu} = 4$$

$$\gamma_{\mu}\hat{a}\gamma^{\mu} = -2\hat{a}$$

$$\gamma_{\mu}\hat{a}\hat{b}\gamma^{\mu} = 4a \cdot b$$

$$\gamma_{\mu}\hat{a}\hat{b}\hat{c}\gamma^{\mu} = -2\hat{c}\hat{b}\hat{a}$$

$$\hat{a}\hat{b} = 2(ab) - \hat{b}\hat{a}$$
(A.7)

Appendix B. Gordon expansion

Electromagnetic current evoked by transition of electron form the state |i
angle to |f
angle

We can decompose to components:

$$-e\overline{u}_{f}\gamma^{\mu}u_{i} = -e\overline{u}_{f}\left(\frac{\left(p_{f} + p_{i}\right)^{\mu}}{2m} - i\frac{\sigma^{\mu\nu}q_{\nu}}{2m}\right)u_{i}$$
(B.1)

where $\sigma^{\mu\nu} = \frac{i}{2} (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu})$.

Let us begin with

$$i\overline{u}_{f} \left(\sigma^{\mu\nu} q_{\nu} \right) u_{i} = -\frac{1}{2} \overline{u}_{f} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) u_{i} =$$

$$-\frac{1}{2} \overline{u}_{f} \gamma^{\mu} \gamma^{\nu} \left(p_{f} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{f} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\mu} \gamma^{\nu} \left(p_{i} \right)_{\nu} u_{i} - \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\nu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\mu} \gamma^{\nu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu} \gamma^{\mu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu} \gamma^{\nu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu} \gamma^{\nu} \gamma^{\nu} \left(p_{i} \right)_{\nu} u_{i} + \frac{1}{2} \overline{u}_{f} \gamma^{\nu} \gamma^{\nu$$

The terms V_2 and V_3 we can easily adjust using the Dirac equation:

$$V_2 = \frac{1}{2} \overline{u}_f \hat{p}_f \gamma^{\mu} u_i = \frac{1}{2} m \overline{u}_f \gamma^{\mu} u_i \qquad (\overline{u}_f \hat{p}_f = m \overline{u}_f)$$
(B.3)

$$V_3 = \frac{1}{2}\overline{u}_f \gamma^{\mu} \hat{p}_i u_i = \frac{1}{2} m \overline{u}_f \gamma^{\mu} u_i \qquad (\hat{p}_i u_i = m u_i)$$
(B.4)

For the terms V_1 and V_4 it is needed to use: $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$

$$V_{I} = -\frac{1}{2}\overline{u}_{f} \left(-\gamma^{\nu}\gamma^{\mu} + 2g^{\mu\nu}\right) \left(p_{f}\right)_{\nu} u_{i} = \frac{1}{2}\overline{u}_{f}\gamma^{\nu} \left(p_{f}\right)_{\nu}\gamma^{\mu}u_{i} - \overline{u}_{f}p_{f}^{\mu}u_{i} =$$

$$= \frac{1}{2}m\overline{u}_{f}\gamma^{\mu}u_{i} - \overline{u}_{f}p_{f}^{\mu}u_{i}$$
(B.5)

$$V_{4} = -\frac{1}{2}\overline{u}_{f} \left(-\gamma^{\mu}\gamma^{\nu} + 2g^{\mu\nu}\right) \left(p_{i}\right)_{\nu} u_{i} = \frac{1}{2}\overline{u}_{f} \gamma^{\mu} \left(p_{i}\right)_{\nu} \gamma^{\nu} u_{i} - \overline{u}_{f} p_{i}^{\mu} u_{i} =$$

$$= \frac{1}{2} m \overline{u}_{f} \gamma^{\mu} u_{i} - \overline{u}_{f} p_{i}^{\mu} u_{i}$$
(B.6)

Hence for B.2 using (A3-6) we get:

$$\overline{\mathbf{u}}_{f} i \sigma^{\mu \nu} \left(p_{f} - p_{i} \right)_{\nu} = V_{I} + V_{2} + V_{3} + V_{4} = 2m \overline{u}_{f} \gamma^{\mu} u_{i} - \overline{u}_{f} \left(p_{i} + p_{f} \right)^{\mu} u_{i} \quad (B.7)$$

From this we get the B.1.

Electromagnetic field - photon

The equations of motion for the electromagnetic field are the Maxwell equations:

$$\partial_{u}F^{\mu\nu} = j^{\nu} \quad \text{a} \quad \partial_{u}\tilde{F}^{\mu\nu} = 0 \tag{1}$$

Where

$$\tilde{F}^{\mu\nu} = \frac{1}{2} \mathcal{E}^{\mu\nu\sigma\rho} F_{\mu\nu}$$

$$F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} = \begin{pmatrix} 0 & -E_{1} & -E_{2} & -E_{3} \\ E_{1} & 0 & -B_{3} & B_{2} \\ E_{2} & B_{3} & 0 & -B_{1} \\ E_{3} & -B_{2} & B_{1} & 0 \end{pmatrix}$$
(2)

 $F^{\mu\nu}$ is the tensor of electromagnetic field, $A^{\mu} = (\varphi, \vec{A})$ is the 4-potencial and $\tilde{F}^{\mu\nu}$ is the dual tensor of electromagnetic field.

The explicit expression of $F^{\mu\nu}$ leads to the Maxwell equation for 4-potencial:

$$\partial^{\nu}\partial_{\nu}A^{\mu} - \partial^{\mu}(\partial_{\nu}A^{\nu}) = j^{\mu} \tag{3}$$

or

$$\left(g^{\mu\nu}\partial_{\lambda}\partial^{\lambda} - \partial^{\mu}\partial^{\nu}\right)A_{\nu} = j^{\mu} \tag{4}$$

The potential A^{μ} exhibits gauge degree of freedom that consist in the fact that physically are measurable the intensity of electric field \vec{E} and induction magnetic field \vec{B} that are defined as follows:

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \nabla \varphi, \quad \vec{B} = \nabla \times \vec{A}$$
 (5)

The quantities \vec{E} , \vec{B} will not change if we make the gauge transformation 4-potencial A^{μ} :

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu} \chi \tag{6}$$

where χ is an arbitrary function differentiable in the 2^{nd} derivatives. Hence the whole class of potentials leads to the same configuration of electromagnetic field. This enables us to choose A^{μ} in such a way that the Lorentz condition is fulfilled:

$$\partial^{\nu}\partial_{\nu}A^{\mu} = j^{\mu}$$
 at $\partial_{\mu}A^{\mu} = 0$

Lorentz condition (7)

Additional freedom. If potential A^{μ} fulfills the Lorentz condition it is still not determined by this condition unambiguously. If we go to an other potential

$$A_{\mu} \to A_{\mu}' = A_{\mu} + \partial_{\mu} \Lambda \tag{8}$$

where Λ fulfills condition $\partial_{\mu}\partial^{\mu}\Lambda=0$. It is clear that if A_{μ} fulfills the Lorentz condition then it fulfills also A'_{μ} . Hence, also after fulfillment of Lorentz condition there is still a freedom in the choice of description of electromagnetic field.

Let us consider electromagnetic field without charge sources (free field - free photon)

$$\partial_{\nu}\partial^{\nu}A_{\mu} = 0 \tag{9}$$

The solution for free field is:

$$A^{\mu}(x) = \varepsilon^{\mu}(\vec{q}) \cdot \exp(-iqx) \tag{10}$$

where $\boldsymbol{\varepsilon}$ is 4-vector of polarization a \boldsymbol{q} 4-momentum carried by field (photon).

The important moments:

- For the solution (10) from Eq. (9) follows: $q^2 = 0$ this corresponds to zero mass of photons.
- Lorentz condition $(q_{\mu} \varepsilon^{\mu} = 0)$ and additional freedom (8) enable to choose potential A^{μ} , in such a way that the vector polarization reads: $\varepsilon_0 = 0$ and hence:

$$\vec{\varepsilon} \cdot \vec{q} = 0 \tag{11}$$

This means that electromagnetic field is polarized transversally and the vector of polarization has two independent components, i.e. the base of vector of polarization contains 2 elements: $\vec{\epsilon}^{(\lambda)}$, $\lambda = 1,2$.

In general the free electromagnetic field is described by the potential:

$$\vec{A}(x) = \int \frac{d\vec{q}}{(2\pi)^{\frac{3}{2}} \sqrt{2\omega}} \sum_{\lambda=1}^{2} \vec{\varepsilon}^{(\lambda)}(\vec{q}) \cdot \left(a_{\lambda}^{(-)}(\vec{q}) e^{-iqx} + a_{\lambda}^{(+)}(\vec{q}) e^{iqx} \right)$$
(12)

where $q = (\omega, \vec{q})$ and two terms in (...) correspond to solution with positive and negative energy (frequency): $q^0 = \pm \sqrt{\vec{q}^2} = \pm \omega$ (hence ω is defined positively).

Energy electromagnetic field

$$H = \frac{1}{2} \int d^{3}\vec{x} \cdot \left(\vec{E}^{2} + \vec{B}^{2}\right) = \frac{1}{2} \int d^{3}\vec{x} \cdot \left[\left(\partial_{t}\vec{A}\right)^{2} + \left(\nabla \times \vec{A}\right)^{2}\right] =$$

$$= \sum_{\lambda} \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \cdot \omega \cdot \frac{1}{2} \underbrace{\left(\frac{a_{\lambda}^{(-)}(\vec{q})a_{\lambda}^{(+)}(\vec{q}) + a_{\lambda}^{(+)}(\vec{q})a_{\lambda}^{(-)}(\vec{q})}{2\omega}\right)}_{*}$$

$$(14)$$

where \cdots represents density of photons (waves) with energy (frequency) $\omega = |\vec{q}|$ in the system of electromagnetic field.

Conclusion. Electromagnetic field is possible to interpret in two ways:

- through \vec{E} and \vec{B} (intensity of electric field and magnetic field),
- as a system of photons (quanta of field).