
1. Feynman rules 

The basic rules for creating matrix elements using the Feynman diagrams are summarized 
below. 

 
 

 

 

 

 



Loops in diagrams 

 

 

 

 

In case of fermion loop it is needed:  

• Add the factor (−1), 

• Make a trace of corresponding 

γ−matrices,  

• a integrate through momentum 

circulating in loop ⇒ 

 

 

(((( ))))

(((( ))))
(((( ))))

ˆ ˆ( ) ˆ( )
. . ( ) ( ) ( )

ˆ ˆˆ( ) ( )
( ) ( )

( )

4
22 2 2

2 2 4
22 2 2

i k m i q k m
F S 1 d k ie ie

k m q k m

Tr k m q k m
1 i ie d k

k m q k m

βλβλβλβλµ νµ νµ νµ ν δαδαδαδα
αβ λδαβ λδαβ λδαβ λδ

µ νµ νµ νµ ν

γ γγ γγ γγ γ

γ γγ γγ γγ γ

++++ + ++ ++ ++ +
= − ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅

−−−− + −+ −+ −+ −

+ + ++ + ++ + ++ + +
= − ⋅= − ⋅= − ⋅= − ⋅

− + −− + −− + −− + −

∫∫∫∫

∫∫∫∫

                      (1.1) 

where 
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The repeating indexes are the summing indexes. 

Remark. The momentum in loop is limited only by the law of momentum conservation. 

As the relation kkqq ++++−−−−==== )(  is valid for all k, we must integrate through all possible k. 

The relation of completeness 

 Let us consider a particle with spin 1, mass m and vector of polarization εεεεµµµµ  for the spin 

sum is valid: 
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2. On  quantization of field 

 

Let us assume that the content of a physical system is a field Ψ(x) or of system fields. 

Then application of the variation principle on the action of the system 

( 0, ======== ∫∫∫∫ SLdtS δδδδ , L≡ the system Lagrangian) leads to the Lagrange equations:  
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Where Λ is the Lagrangian density. 

 

The basic fields with which we have to do in the elementary particle physics are: 

• Complex scalar field: 
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The corresponding LR:                     
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• The spinor (Dirac) field: 
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The corresponding LR:                     
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• The electromagnetic field with external source: 
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The corresponding LR:                     
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The Lagrange equation for: 

• Scalar field (≡ KG equation) describes the particles with spin 0, i.e. the quanta of 

scalar field, 

• Spinor field (≡ Dirac equation) describes the particles with spin 1/2, i.e. the quanta of  

spinor field, 

• Electromagnetic field (≡ Maxwell equation) describes photons (spin 1, m=0), i.e. the 

quanta of electromagnetic field. 

 

Scalar and spinor field do not have classical interpretation – only the quantum one, 

while the electromagnetic field has both the classical interpretation (intensity of  electric 

and magnetic field), as well as the  quantum interpretation –  a system photon. 

 The above mentioned Lagrange equations (KGR, DR, MR ) are  equations of  

classical fields. In application to one particle they give the quantum mechanics of: 

• boson with spin 0 (KGR) 

• fermion with spin 1 (DR) 

• photon (spin 1, m=0)  (MR). 

 

From comparison of the structure of the Lagrange equation of system of fields (1) with 

that of classical system with N degrees of freedom 
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it follows: 

   a   q t xµµµµΨΨΨΨ→ →→ →→ →→ →                                                                           (2.9) 

 

• the generalized coordinate of the field system is ΨΨΨΨ(x);;;; 

• the generalized momentum of the field system is (((( ))))
( )x
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Quantum Mechanics (QM): the quantization consists in the replacement of physical 

variables by corresponding quantum operators: 

 

   a   ˆ ˆq q q p p i→ = → = − ∇→ = → = − ∇→ = → = − ∇→ = → = − ∇ℏℏℏℏ                                                    (2.10) 

where in general the quantum operators do not commute: 

[[[[ ]]]]ˆ ˆ,q p i==== ℏℏℏℏ                                                                                       (2.11) 

The operators of quantum variables act in a Hilbert space that represents the quantum 

states of a physical system.  

 

Quantum Field Theory (QFT): for field quantization is valid an analogical scheme as 

in QM:  

     a     (x)ˆ ˆ( ) ( ) ( )x x xΨ Ψ π πΨ Ψ π πΨ Ψ π πΨ Ψ π π→ →→ →→ →→ → ,                                            (2.12) 

where   andˆ ˆ( ) ( )x xΨ πΨ πΨ πΨ π  are the operators satisfy the following commutation relations: 
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The Ψ̂ΨΨΨ -operators could be expressed by means of annihilation and creation operators. 

Using Ψ̂ΨΨΨ -operators or annihilation and creation operators one can construct Hamiltonian 

of the field system and this Hamiltonian will act in the corresponding Fok space (see 

further). 

 



 The charge scalar field quantization. 

 

If our physical system is made up of a complex scalar field then the density of its 

Lagrangian is 
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Where φ and φ*  can be treated as independent fields and two canonically conjugate to 

them fields are: 

,
L Lπ φ π φπ φ π φπ φ π φπ φ π φ
φ φφ φφ φφ φ

∗ ∗∗ ∗∗ ∗∗ ∗
∗∗∗∗

∂ ∂∂ ∂∂ ∂∂ ∂= = = == = = == = = == = = =
∂ ∂∂ ∂∂ ∂∂ ∂

ɺ ɺ
ɺ ɺ

                                                                                (2.15) 

Finally it leads to the Hamiltonian: 
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Quantization of the field is achieved by replacement of the fields φ, φ* , π, π* by the field 

operators: † †ˆ ˆ ˆ ˆ, , ,φ φ π πφ φ π πφ φ π πφ φ π π  which are required to fulfill  at the same time the commutation 
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The Lagrange equations for the complex scalar field are Klein-Gordon equations (KGE). 

In general the solution of KGE is a superposition of the plane waves: 
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At the field quantization the coefficients ( ) ( )a p−−−− �  and ( ) ( )a p++++ �  will be replaced by the 

operators ̂ pa �  and †ˆ
pb�  and in the field φ*  the coefficients (((( ))))*( )( )a p−−−− �  and (((( ))))*( ) ( )a p++++ �  by the 

operators †ˆ
pa �  and ˆpb� . It can be easily shown that to fulfill the commutation relation (2.17) 
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All others commutators are equal to 0. Theˆ
pa � , ˆ

pb�  are called annihilation operators and 

the †ˆ
pa � , †ˆ

pb�  creation operators of particle and antiparticle, respectively. Using the 



annihilation and creation operators we can express the Hamiltonian (2.16) through them. 

The fact that ̂ pa � , †ˆ
pa � , ˆ

pb�   and †ˆ
pb�  are operators, and in general do not commute,  means 

that the order of these operators is important (while it was not the case for the 

corresponding classical quantities).  Starting from the Hamiltonian (2.16) replacing the 

classical fields by the operator ones and the latter expressing through the annihilation and 

creation operators we get: 
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The fact that in (2.20) after commutation we get 1 under the integral is unpleasant as after 

the integration we get infinity (infinite energy of vacuum). But in theory this 1 under the 

integral is ignored as the so called normally ordered Hamiltonian is used as Hamiltonian 

of physical system: 
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Where : -- : is the symbol of normal order (all creation operators are left to annihilation 

operators) and 2 2
p p mωωωω = += += += +�

�
.  

As it will be shown later the Hamiltonian Ĥ acts in Fok space and the operator †ˆ ˆ
p pa a� �  is 

an operator of number of particles with momentump
�

.  

 

The spinor field quantization 

In case of the spinor field the full solutions of Dirac equations are: 
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The Lagrangian of spinor field: 
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The canonical momentum: 
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The Hamiltonian: 
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In general the field 4-momentum reads: 

∫∫∫∫ ∂∂∂∂⋅⋅⋅⋅==== ΨΨΨΨγγγγΨΨΨΨ µµµµµµµµ
03 xdiP                                                                                 (2.26) 

And for its charge one gets: 
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 The field Hamiltonian after having the field function explicitly expressed is: 
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The field charge after the explicit expression of the field function: 
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Now let us assign operators to the coefficients (((( )))) and  
*( ) ( )a aλ λλ λλ λλ λ
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where (((( ))))a aλ λλ λλ λλ λ
++++  are the annihilation  (creation) operators for electrons  

           (((( ))))b bλ λλ λλ λλ λ
++++  are the annihilation  (creation) operators for positrons. 

To have the energy of the system positively defined and on the other side its charge 

should have a possibility to be positive or negative, the following anti-commutation 

relations should be fulfilled: 
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On quantization of the electromagnetic field 

 

For the vector potential of electromagnetic field one can write: 
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On the base of the vector potential (2.32) the vectors of the electric intensity E
�

 and 

magnetic induction B
�

 can be easily found using the relations: 0tE A A∆= −∂ −= −∂ −= −∂ −= −∂ −
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 and 
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magnetic field. To find the quantum representations of this field we will use (2.32) to 

express the energy of electromagnetic field: 
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Remark. The Hamiltonian (2.33) one can write: (((( )))) (((( ))))( ) ( )
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however we let it be in the form shown above due to the reasons needed for its quantization. 

The field quantization in the replacement of the coefficients ( )aλλλλ
±±±±  by the operators:  
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     (annihilation operator)                                            (2.34) 
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      (creation operator) 

To have the Hamiltonian (2.15) positively defined the commutation relations for the 

creation and annihilation operators should obey: 
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The Fok space 

Using the operators ππππΨΨΨΨ ˆˆ  a  (or creation and annihilation operators, see further) it is 

possible to construct the Hamiltonian H of a system of interacting fields. The operator H 

acts in Fok space that contains the states: 
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The creation and annihilation operators 



The operators of creation and annihilation )(),( kaka +  play a key role in multi-particle 

interpretation of  quantum field theory. Let us begin with the operator 

)()()( kakakN +=                                                                                       (2.37) 

Its eigen values we denote as n(k): 
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Using the commutation relations for )(),( kaka + we get: 
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From where it follows: 
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                              (2.40) 

Hence if  the state )(kn  is an eigenstate of  operator N(k) with the eigenvalue n(k), then 

)()( knka +  is the eigenstate of operator N(k) with the eigenvalue n(k)+1. 

In an analogical way it can be shown that )()( knka  is the eigenstate of operator N(k) 

with the eigenvalue n(k)-1. 

 

The scheme of interaction in quantum field theory (QFT) 

 

Initial state of field system  

(system  of free particles) 
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interaction Hamiltonian 

 

Final state of field system  

(system of free particles) 
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probability 
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of transition 
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The goal of QFT is to find the element outin H φφφφφφφφ  that represents probability of 

transition from the state inφφφφ  to the state outφφφφ   due to interaction. The QFT gives 

a recipe for calculation of the transition amplitude (matrix element). The practical 

realization of this recipe present the technique of Feynmann diagrams. 

 


