1. Feynman rules

The basic rules for creating matrix elements uiigFeynman diagrams are summarized
below.
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Loopsin diagrams

k+q In case of fermion loop it is needed:
H A v «  Add the factor £1),
* Make a trace of corresponding
q—> y-matrices,
»~_ » aintegrate through momentum
K circulating in loop=
k +m) +k+m
P52 (C0fd% o), B ey, AT My
(q+k) -m
(1.1)
Tr ( ”(k+m)y”<q+k+m))
=(-1)i%(ie) jd k B——
(k“=m )(q+k) -
where

= H A= H
k=k,y*, d=q,y
The repeating indexes are the summing indexes.
Remark. The momentum in loop is limited only by the lawmémentum conservation.

As the relationq = (g — k) + k is valid for allk, we must integrate through all possikle

The relation of completeness

Let us consider a particle wighin 1, massm and vector of polarizatiog’ for the spin

sum is valid:

> e = —g” +grq’/m’ (1.2)



2. On quantization of field

Let us assume that the content of a physical systenfield ¥(x) or of system fields.

Then application of the variation principle on #tion of the system

(S= j Ldt, J&5=0, L=the system Lagrangian) leads to the Lagrange iemsat

N | an _
d“[a(o";, w)} -~y =0 2.1)

WhereA is the Lagrangian density.

The basic fields with which we have to do in theneéntary particle physics are:

» Complex scalar field:

A=0,4' B p-m’p'p, (2.2)
The corresponding LR:
(0,0“+m*)g=0, (8,0"+m*)g°=0 2.3)

* The spinor (Dirac) field:
='_2[47y” B,y -0,%)v]-mEw, (2.4)

The corresponding LR:
(y04-mw=0  @liy,a+m)=0 (2.5)

* The electromagnetic field with external source:
1 .
A=ZFWFW+A#J”' (2.6)

The corresponding LR:
9,0"A%-a,(0"A )= j* 2.7)



The Lagrange equation for:

» Scalar field € KG equation) describes the particles with spined the quanta of
scalar field,

» Spinor field & Dirac equation) describes the particles with 4pi i.e. the quanta of
spinor field,

» Electromagnetic fieldX Maxwell equation) describes photons (spim£), i.e. the

guanta of electromagnetic field.

Scalar and spinor field do not have classical pregation — only the quantum one,
while the electromagnetic field has both the clzddgnterpretation (intensity of electric
and magnetic field), as well as the quantum imetghion — a system photon.

The above mentioned Lagrange equations (KGR, DR ) Mre equations of
classical fields. In application to one particleytlgive the quantum mechanics of:
* boson with spin 0 (KGR)

» fermion with spin 1 (DR)
» photon (spin 1im=0) (MR).

From comparison of the structure of the Lagrangegqgn of system of fields (1) with

that of classical system with N degrees of freedom

Af L) 9L o, i=1..N, (28)
dt{dq ) 2q
it follows:
q-% at-x* (2.9)

» the generalized coordinate of the field systertiis),

aN
o(a,¥)

U

» the generalized momentum of the field systermm(g) =



Quantum Mechanics (QM): the quantization consists in the replacement of plgycal

variables by corresponding quantum operators:

q-0=q a p- p=-ikO (2.10)
where in general the quantum operators do not cdeimu
[4,p] =in (2.11)
The operators of quantum variables act in a Hilbpéace that represents the quantum

states of a physical system.

Quantum Field Theory (QFT): for field quantization is valid an analogical schera as
in QM:
W(X) - ¥(x) a mX)- ax), (2.12)
where lf/(x) and 71(x) are the operators satisfy the following commutatielations:
p(x0).7(x1)] = i5(x-X)
0 (2.13)
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The lfl-operators could be expressed by means of anmaimland creation operators.
Using lﬂ-operators or annihilation and creation operatoes @an construct Hamiltonian
of the field system and this Hamiltonian will act the corresponding Fok space (see
further).



The charge scalar field quantization.

If our physical system is made up of a complexadatld then the density of its
Lagrangian is
—_ 2
L =0,¢0"p-m’gp (2.14)
Wherepandg can be treated as independent fields and two éeallynconjugate to

them fields are:

——=. =a—L='
”_0¢ ¢, o7 (2.15)

Finally it leads to the Hamiltonian:
H = [d°x(nd,p+ 10~ L) = [k (n'm+ DF Mo+ m’Pp)  (2.16)
Quantization of the field is achieved by replacetérihe fieldsp, @ , T, T by the field

operators:&, &T, 71, 1" which are required to fulfill at the same time tommutation

relations:
[&;(x,t), ﬁ(fc,t)] =[¢3T (%,t), 7' (X' t )] =ig(X-X") (2.17)
The Lagrange equations for the complex scalar aetdKlein-Gordon equations (KGE).

In general the solution of KGE is a superpositibthe plane waves:

s i (8] £y X x =(x°% X
/\/_[ a?(p)e™ +a(p)e :| E((E,ﬁ)) (2.18)

At the field quantization the coefficients™ (p) anda'™ (p) will be replaced by the

¢()j

operatorsa, and Bg and in the fieldp the coefficients(a(‘)(r)))* and(a(*)(r)))* by the
operators?ﬂ; and 6,.). It can be easily shown that to fulfill the comiatitin relation (2.17)
the operatord,, &, Bp and 6,1; should obey:

(4,.8) ] =[6p,6g.] =id(p-p') (2.19)
All others commutators are equal to O. 'ﬁpe Bp are called annihilation operators and

the é‘*.), 6; creation operators of particle and antiparticlespectively. Using the



annihilation and creation operators we can exptesgiamiltonian (2.16) through them.
The fact thatép,é;, Bp and 6; are operators, and in general do not commute,nsnea
that the order of these operators is important levhiti was not the case for the
corresponding classical quantities). Starting fribrm Hamiltonian (2.16) replacing the

classical fields by the operator ones and therlattpressing through the annihilation and

creation operators we get:
H = [d*pey, (8,8, +bb, ) = [ d°pes, (8,8, +5,5, +1) (2.20)

p P

The fact that in (2.20) after commutation we gentler the integral is unpleasant as after
the integration we get infinity (infinite energy wécuum). But in theory this 1 under the
integral is ignored as the so called normally cedeéfamiltonian is used as Hamiltonian

of physical system:
H = jd3pa1p(éé b ) _[d p%(a;ép+6p’6p) (2.21)
Where : -- : is the symbol of normal order (allatien operators are left to annihilation

operators) andy, =+/p*+m?.

As it will be shown later the HamiltoniaH acts in Fok space and the opera&@ﬁp is

an operator of number of particles with momenfum

The spinor field quantization

In case of the spinor field the full solutions afdz equations are:

("') —ipx (=) ipx
W(x)= I(zm/FZ( (P)Ou, (p) ™ +a(P) I, () &™)

P(x)=| o J—Z((as*’m))* o, () ™ + (a5 () O, (p) &™) .
The Lagrangian of spinor field:
=l2[¢/y”(aﬂw)—ay¢fy”4/:|—m¢/4/ (2.23)
The canonical momentum:
m(x) =5 5o =97 (x) (2.24)

¥(x)



The Hamiltonian:

H = [dxomw-L=[a*x @i 2y
at

In general the field 4-momentum reads:
P, =i[d°x¥ %0, ¥
And for its charge one gets:

Q=ijd3x[47y°w

The field Hamiltonian after having the field furmet explicitly expressed is:

H =[d*pE I [(@" () 2" (B) - (a5 (B) 2 (P)]
A
The field charge after the explicit expressionhaf tield function:
Q= Id gy [(af‘*’ (P)"a3” (P)+(@;” (P) a3 ( T))]
A
Now let us assign operators to the coefficieajfs and (aff) )

(+) @Y + =) + (AOY)
a, _.a,,(a,,)_.a,,, a,”’ - b (a,,)_.b,,

+

wherea, (a,,) are the annihilation (creation) operators focetns

b, (b;') are the annihilation (creation) operators forifposs.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

To have the energy of the system positively defaed on the other side its charge

should have a possibility to be positive or neggtthe following anti-commutation

relations should be fulfilled:

{a®), 8 ()} =8, BK-K) {b(K), bj(K)} =8, B K-K)

On quantization of the electromagnetic field

For the vector potential of electromagnetic fiette@an write:

dk zg(,]) (K) [(a;-) (K) B + al) () l}ikx)

A(x) = 3
’ '[(271)/2@/1

(2.31)

(2.32)



On the base of the vector potential (2.32) thearsadf the electric intensit and

magnetic inductiorB can be easily found using the relatiois= -9, A-A A, and
AxB =(1/c)d,E . The quantitie& and B represent classical interpretation of electro-

magnetic field. To find the quantum representatwinthis field we will use (2.32) to

express the energy of electromagnetic field:
H,, = ;J‘(Z:)—EZCU D")B%(a;-) (E) &) (IZ) +al) (R) & (R)) (2.33)
Wherek = (w IZ) andw=+k?

—

Remark. The Hamiltonian (2.33) one can write: H_, = ZI rAlE\ (k) @&" (IZ)
A

dk
22w
however we let it be in the form shown above due to the reasons needed for its quantization.

The field quantization in the replacement of thefficients a* by the operators:
AX) - ,&(x) W-operator)
al” (E) -~ &, (IZ) (annihilation operator) (2.34)
alt) (IZ) - & (E) (creation operator)

To have the Hamiltonian (2.15) positively defined tommutation relations for the

creation and annihilation operators should obey:

[8,(K), 8;(K)]= J(E - E’) B, (2.35)
The Fok space
Using the operatorsﬂ a7t (or creation and annihilation operators, see @it is

possible to construct the Hamiltoniginof a system of interacting fields. The operator

acts in Fok space that contains the states:

o={|@} where |@ = da) + _1¢,¢_1,> + 4oy +- (2.36)
vacuum 1-particle state 2- particle state

The creation and annihilation operators



The operators of creation and annihilatak), a” (k) play a key role in multi-particle
interpretation of quantum field theory. Let us ibpegith the operator

N (k) =a*(k)a(k) (2.37)
Its eigen values we denoterg¥):

N (k)|n(k)) = n(k)|n(k)) (2.38)
Using the commutation relations fafk),a’ (k wg get:

INK).a* ()| = a*(k)

(2.39)
[N(),ak)] = -a(k)
From where it follows:
N(k)a*(k)|n(k)> = a*(k)N(k)|n(k)>+a*(k)|n(k)>
(2.40)

(n(k) +1)a" (k)| n(k))
Hence if the statbw(k)) is an eigenstate of operatefk) with the eigenvalua(k), then
a+(k)|n(k)> Is the eigenstate of operate(k) with the eigenvalua(k)+1.

In an analogical way it can be shown tlaak)| n(k)) is the eigenstate of operatdk)

with the eigenvalua(k)-1.
The scheme of interaction in quantum field theory (QFT)

Initial state of field system Interaction Final state of field system

(system of free particles) —  (system of free particles)

interaction Hamiltonian

probability

e" (k) e (k,) - (R p(P,)
of transition




The goal of QFT is to find the elemefg, |H|g@,,) that represents probability of

transition from the statgg, ) to the stateg,,) due to interaction. The QFT gives

a recipe for calculation of the transition amplgudnatrix element). The practical

realization of this recipe present the techniguEeyinmann diagrams.



