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Amplitude of scattering in 2nd order of perturbative theory 

 

Scattering of electron on static potential 

Let us consider the scattering electron in field of static potential (e.g. atomic nucleus).  

The transition amplitude of electron from initial state to final state is in 1st order is reads: 

 

 

Fig. 1: Scattering of electron on static 
potential (1st order), electron exchanges 
virtual photon with scattering center.  
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where Aµµµµ(q) is Fourier pictures of Aµµµµ(x). In 

case of the static potential Aµµµµ(x) does not 

depend from time: 
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For determination of 3-dimensional Fourier 

picture Aµµµµ(q) we use the Maxwell equations: 
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This leads to 
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The result for the amplitude of electron scattering in the 1st order reads 
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The presence of δδδδ−−−−function leads to q0000=0 and hence
22 qq
�−= . Let us assume that the 

static potential is the potential of atomic nucleus with the charge Ze. Then the invariant 

amplitude e−−−−Ze−scattering reads: 
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where    ( ) 0,)()(0
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The cross section of e−−−−Ze−scattering (Rutherford scattering) in first order: 
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Rutherford scattering in 2nd order of perturbative approach (approximation e4) 

 

Into e−−−−Ze−scattering it is needed to include also diagrams with 4 vertexes. The first of all 

we will treat Rutherford scattering in case of fluctuation of virtual photon to pair e+e− (see 

Fig. 2).  

We expect that after inclusion of the 2nd 

order of perturbative method the amplitude 

of process is: 

 
2

(1) 2 (2),
4
e

M A Aα α αα α αα α αα α α
ππππ

= + == + == + == + = , 

 as αααα ≅≅≅≅ 1111////111133337777, it is expected that the 2nd 

order will be suppressed by around 100-

times. It is true provided that the spinor part 

of amplitudes ( (1) (2),A A ) do not differs 

a lot. We will show that direct calculation 

of (2)A  leads to divergence of this quantity.  

 
  
Fig. 2:Rutherford scattering in  2nd order –  
fluctuation of virtual photon to pair e+ e−. 

 

Invariant amplitude: 
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The addition of amplitude M(2) (~e4) to amplitude M(1) (~e2) is equivalent to the folowing 

modification of propagator (see Fig. 3): 

 
 
Fig. 3: Modification of propagator that 
enable to include the effect of virtual pairs 
into amplitude of scattering.  
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The problem is that the integral )( 2qI µνµνµνµν  diverge at p →→→→ ∞∞∞∞  (at calculation of Iµµµµνννν  is 

needed to calculate traces of γγγγ-matrices (see Appendix A) and then calculate the integral 

(see appendix B). 

 

The calculation of the integral )( 2qI µνµνµνµν gives: 
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where m is the electron mass. The terms proportional to qµµµµ qνννν give after summation the 

zero contribution to the process amplitude. It is a consequence of calibration invariance of 

the electromagnetic interaction that leads to the conservation law of charge: ( ) 0J xµµµµ
µµµµ∂ =∂ =∂ =∂ =  

→ ( ) 0q j pµµµµ
µµµµ ====  (where qµµµµ is 4-momentum of photon that is coupled to the current j µµµµ ) 

and amplitude (2)M  has the structure: (2)M j I jµ νµ νµ νµ ν
µνµνµνµν∼∼∼∼ . The problem we will try to solve 



in such a way that in the first we will regularize logarithmically divergent part of I(q2), 

i.e. in  I(q2) we will change: 2M→∞  

Remark: Regularization means the upper limitation of the momentum „circulating“ in 

loop. This limitation means under the Heisenberg principle of uncertainty a discrete 

structure of space at a level 1/M. If as the limit M we took Planck mass 

( 219 /1022.1 cGeVGcM P ⋅== ℏ   ) then discreetness of space is represented by the 

minimal length ( ) mcMl Pp
35106.1 −⋅≈= ℏ . 

 

The effects of e++++e−−−− −−−−loops at small transferred momenta 

At small momenta ( -q2 <<<<<<<< m2 ) it is valid:  

2

2

2

2 )1()1(
1ln

m
zzq

m
zzq −−≈






 −−                                                                   (13) 

In this case the I(q2) reads: 
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The effects of e++++e−−−− −−−−loops at large transferred momenta 

At large momenta (-q2 >>m2) it is valid:  
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The amplitude of Rutherford scattering at small transverse momenta 

If into the relation (11) we put instead of I(q2) the expression (14) and in the amplitude 

(6) we replace the propagator under the scheme (9) then the amplitude in the 2nd order 

reads: 
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Let us introduce the reduced charge in the following way: 
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In this case with a precision O(e4)  for (-iM)  we get: 
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Let us assume that the charge measured in experiment at 0q 2 ≈≈≈≈ (Thompson scattering) is 

the reduced charge eR then the amplitude M is finite in the 2nd order. 

Remark. The charge e that we have used to express the amplitude M, is the charge that is 

“sitting” in the equation of motion (for motion of electron in electromagnetic field). At the same 

time the equation of motion we can treat as the Lagrange equation of a certain physical system of 

fields (in our case this system contains the electron-positron field and the electromagnetic one) 

with a certain Lagrangian – in our case: the Lagrangian of QED: 
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The charge e  „sitting“ in Lagrangian we will call the bare charge that differs from the 

experimentally determined charge. 

 

Lamb shift 

The first term in the amplitude of e−−−−Ze-scattering (19) is connected with the Coulomb 

potential. We can be convinced in this by backward Fourier transformation: 
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The 2nd term in the amplitude of e−Ze-scattering (19) corresponds to the effect of virtual 

e++++e−−−−-pair in propagator: 
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The potential acting between the charge of nucleus and electron is: 
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Remark: Eq. 22 is not exact as we used approximate value of I(q2) at small (−−−−q2). 

It should be noted that the contribution of virtual pair in photon propagator manifests 

itself experimentally – it leads to the shift of the energetic levels in hydrogen atom i.e. to 

the so-called Lamb shift. Using perturbative approach the additional term leads to the 

following shift of energetic levels: 
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Where ΨΨΨΨnl(0) is the value of the wave function describing  the state of hydrogen atom 

with the main quantum number n and orbital number l  in the  centre of  atom i.e. in 

nucleus. 

The Lamb shift is really observed in the spectra of hydrogen atom! 

 

Anomalous magnetic moment of electron 

The full set of diagrams ~ e4 (2nd order of perturbative theory) for the e−−−−Ze-scattering is in 

Fig. 4. 

 

Fig. 4: Diagrams for the eZe-scattering in 2nd order of perturbative theory. 
 
The loops in diagrams b, c and d, similarly as in diagram a, also diverge.  These 

divergences could be „hidden“ in  redefined charge, mass and wave function of electron. 



Let us consider the diagram b, the loop in vertex modifies the structure of electron current 

( if uue µµµµγγγγ−−−− ): 
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In the e4 approximation and for small (-q2) the loop integral reads: 
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Remark. The mγγγγ is small effective mass of photon that was introduced for removing divergences 

at small ||||k |||| (circulating momentum) – under the Heisenberg principle to mγγγγ correspond a length 

1/ mγγγγ that is an upper limit for the wave length of photon  - it could means a finite dimension of 

universe. Ward identity (see below) will show us that the contribution of diagram (b) modifying 

the charge will be canceled by the contributions of the diagrams (c) and (d), so we can ignore it 

in (25). 

Let us make the Gordon expansion of electromagnetic current: 
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The term νννν
µνµνµνµνσσσσ q  describes magnetic moment of electron: 
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where 2σσσσ�
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====S a g=2 is gyromagnetic factor.  

By inserting the Gordon expansion into the amplitude (25), the  magnetic moment reads: 
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Hence g=2+αααα/ππππ. If we include also the higher orders of perturbative expansion, we will 

achieve an excellent agreement with experiment: 



(((( ))))

(((( )))) 9

9

105.37.6571591
2

103.34.6551591
2

−−−−

−−−−

⋅⋅⋅⋅±±±±====






 −−−−

⋅⋅⋅⋅±±±±====






 −−−−

exper
g

g

g
g

theory

                                                         (29) 

 

Ward identity 

 

A complete calculation of the amplitude requires include into eR (in the e4 approximation) 

also the infinite parts of the loops shown in Fig. 4. 

 

Its clear that the  diagram 

particle. 

 

Does not depend on type of scattering   

However in case of the diagrams (b), (c) and (d) the scattering particle is a part of loops. 

As these loops give contributions to the charge correction there exists a threat that the 

charge will depend on type of particle – e.g. the charge (e-) ≠ náboj (µµµµ-). However the 

dependence of charge on type of particle is not observed experimentally! 

By the direct calculation of diagrams (b), (c) and (d) it can be shown that the Ward 

identity is valid: 

 

 

 =  0                      (30) 

R 

 

Hence modification of charge is carried out only due to the polarization of vacuum 

(diagram a). 

 

 

 



Scattering of the e−−−−µµµµ−−−− →→→→ e−−−−µµµµ−−−− in e4 approximation 

 

The amplitude of the e−−−−µµµµ−−−− in e4 approximation we can get from the amplitude of e−−−−Ze 

scattering by the replacement: (((( )))) )()(0,)( pupuieZeqij if
µµµµµµµµ γγγγ′′′′→→→→≡≡≡≡−−−− (see Fig. 5) 

 

Fig. 5: Transition from the e-Ze-scattering to the eµµµµ-scattering. 
 
If we include into the eµµµµ-scattering the e4-diagrams then we need to work with 

renormalization charge eR. The correction to propagator is the same as in case of the 

e−−−−Ze-scattering: 
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)()(
q
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q

i −−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−
µνµνµνµν  , 

And it will be the same in all process with photon as an intermediate particle. At the eµµµµ-

scattering however exist also other e4-diagrams that should be taken into account. 

 

Renormalization 

 

Charge is connected with photon-electron interaction − characterizes its power (Fig. 6): 

 

Fig. 6: Photon - electron coupling is characterized by charge e. 
 

However the eγγγγ-interaction goes also through diagrams as those shown in Fig. 7. 



 

Fig. 7: Examples of the eγ-interaction characterized by more complex diagrams. 
 

In Coulomb experiment the charge is measured as contribution of all diagrams. The 

charge in the diagram in Fig. 6 we will denote as the “bare” charge. This charge is not 

identical with that measured in experiment at a given transferred momentum. The relation 

of the charge measured in experiment (e) and bare charge (e0) is given by the diagram 

expression shown in Fig.8: 

 

           Fig.8: relation between the charge e measured in experiment at Q2=µµµµ2 and bare charge e0. 
 

Expression of the experimental charge through the bare one assumes that experiment is 

carried out at the transferred momentum q2 = -Q2 = -µµµµ2. 

Remark. It should be taken into account that at measurement of charge in  Coulomb 

experiment, experimenter assumes that the process is described by one-photon amplitude 

A0 (diagram on left in Fig. 8) in that  „seeds“ the experimental charge – the cross section 

of process is proportional to 4th  power of  the experimental charge: 

.

24 4
coul flux 0 ph space kine k A k e Fσσσσ = = ×= = ×= = ×= = × , 

As the factor of input current (kflux) and that of phase space (kph.space) are known quantities 

by measurement of cross section we measure charge. The measured charge represents an 

effective charge because at its extraction from cross section, experimenter does not take 

into account the higher orders. 

If in the relation between e and e0 we restrict ourselves to one-loop approximation: 

[[[[ ]]]])()(1 4
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2 eOqIee ++++−−−−====−−−−==== µµµµ                                                      (31) 

or after having made the square  (we take the I(q2) as a small quantity) 
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or expressed by diagrams: 

 

Fig. 9: The relation between experimental and bare charge in 1-loop approximation. 
The inverse relation in one-loop approximation: 
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Fig. 10: Bare charge vs. experimental one in 1-loop approximation  
We have found the relation between e (experimentally determined charge at transferred 

momentum µµµµ) and e0 (bare charge). Let us express now the amplitude of eµµµµ-scattering 

(M(e0)) for an arbitrary square of transferred momentum Q2 using the bare charge e0. 

 
Fig. 11: Amplitude of scattering expressed through bare charge. 

Expressing the e0 through the e we get the amplitude of eµµµµ-scattering (M(e2)) expressed 

through the experimental charge at fixed Q2 =µµµµ2: 

 

Fig. 12: Amplitude of eµ-scattering expressed through experimental charge at transferred 
momentum µ2 in 2nd order of perturbative expansion. 
Owing due to the fact that at transition from M(e0

2) to M(e2) we in frame of 1-loop 

approximation nothing have thrown away, it should be fulfilled : 
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At the same time the term of order e4 consists from 2 parts – one them contains a loop at 

Q2 and the other at µµµµ2 and (in approximation of big transferred momenta) is valid: 
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Hence the difference of both parts is finished! And we see that the expansion of the 

amplitude of eµµµµ-scattering into series in powers of experimental charge e gives the finite 

coefficients at powers of e (unlike of the expansion is done in powers of bare charge). 

 The free parameter µµµµ  that have the dimension of mass (transferred momentum at 

which the charge is defined) arises as a consequence of renormalization of charge. 

A different choice of scale µµµµ leads to different expansions of amplitude M. However 

2
M is a quantity proportional to cross section therefore cannot be dependent on choice of 

the scale µµµµ. This independence is expressed by the equation of renorm-group: 
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                                                                                        (36) 

Hence the explicit dependence of M from µµµµ  is compensated by a dependence of e from 

µµµµ2. 

Running coupling constant - screening of charge in QED 

 
The effect of modification of charge it is possible to determine in all orders of 

perturpative expansion what can be expressed by means of the diagrams: 

 
Fig. 13: Charge e at a given Q2 expressed through bare charge e0 by inclusion of all orders. 
 
The above mentioned geometrical series can be summed as follows:           



 

 

≡           








−−−−++++
====

)(1
1

)(
2

2
0

22

QI
eQe       (37) 

 
This relation means that experimentally determined charge depends on value of square of 

transferred momentum  Q2 at which this charge is determined. The quantity 

(((( ))))
ππππ

αααα
4

)( 22
2 Qe

Q ====  is called the running coupling constant and in limit at big Q2 it reads: 
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From where we get: 
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If we introduced renormalization scale µµµµ (i.e. reference transferred momentum at which 

the charge was determined) and express αααα0 through αααα(µµµµ2) we get: 
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At the expression αααα(Q2) we get rid of the parameter M, however we have introduced the 

scale µµµµ..  

 
 

Fig. 14: Effect of e−e+ loops at interaction of two charges. 



The running coupling constant αααα(Q2) describes dependence of effective charge on 

distance (1/Q) between charged particles. With increasing Q2 photon „see“ bigger and 

bigger charge. From Eq.39 it is clear that the bare charge is the charge at the „limit“ 

transferred momentum M  (or at the minimal possible distance between charges 1/M). If 

we go with M →→→→ ∞∞∞∞  then the bare charge becomes infinite (as is seen from (39)). 

Remark. We took into account only the e−−−−e++++ −loops, however at large Q2 their 

contribution will give also other loops – the loops from pairs µµµµ−−−−µµµµ++++, qq , etc. 

 

Coupling constant of strong interaction 

Before discussion about the coupling constant of strong interaction it is needed to discuss 

the question of real and virtual photons. 

 
Real and virtual photons 

The amplitude of eµµµµ-scattering ( in general in scattering of particles A and B) reads: 
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If we choose the coordinate system in such a way that q
�

(transferred momentum) is in 

direction of z-axis, i.e. (((( )))), , ,0q q 0 0 qµµµµ ====
����

, then for the continuity equation we have: 
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If the exchanged photon is almost real (0q q≈≈≈≈
����

) then  j0 ≈≈≈≈ j3 and the contributions of 

longitudinal and scalar photons are mutually cancelled. For the truly virtual photon:  
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T: propagation of virtual photons in states with transverse polarization (time-like 

propagator). 

C: describes immediate Coulomb interaction between the charges of particles A and B. 

 Using the inverse Fourier transformation for the part C we get: 
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We see that C does not depend on time and it leads to: 
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Hence the charges of particles A and B interact without a delay in time t. 

 

Running coupling constant for QCD 

A basic principle of determination of the strong coupling constant )( 2
S Qαααα  as a function 

of 2Q  is the same as in QED however the result is diametrically different. In 2nd order 

(for QCD) we have: 

 

Fig. 15: Effect of virtual pairs (gluons and quarks) in QCD, T is transversal gluon and C is 
„Coulomb“ gluon. 
 

 The shown diagrams give at 22Q µµµµln in equation for the coupling constant (see Eq. 40) 

the coefficient: 
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where nf is the number of the quark flavors. 



Remark: In QED 1n f ====  (only 1 pair of e+ e− ) the corresponding coefficient is 4 3−−−− , as 

the definitions of αααα and ααααs differs by a factor 2 (given historically). 

In general it is possible to prove the theorem: 

Arbitrary states that can arise at time-like propagator lead to screening of charge, hence to 

the negative coefficient at (((( ))))ln 2 2Q µµµµ . The Coulomb gluons (space-like propagator) lead 

to the opposite phenomenon. 

The coupling constant for large Q2 can be expressed (in acco0rdance with Eq. 40) as 

follows: 
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(((( ))))2
S Qαααα  decreases with increasing Q2 –  is getting small at small distances: 

(((( ))))2 2
SQ Q 0αααα→ ∞→ ∞→ ∞→ ∞ ⇒⇒⇒⇒ →→→→  (asymptotic freedom). 

At small Q2 the coupling αS gets big – let us denote 2 2Q ΛΛΛΛ====  - for 
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If we put (((( ))))2
Sα µα µα µα µ  into the expression for (((( ))))2

S Qαααα  (47) we get:  

( )
ln

2
S 2

f 2

4
Q

2 Q
11 n

3

ππππαααα

ΛΛΛΛ

====
    −−−−    
    

                                                                           (49) 

From where one can see that at Q2 (((( )))) (((( ))))2 2 2
SQ QΛ αΛ αΛ αΛ α≫≫≫≫  is small ( (((( ))))2

S Q 0αααα →→→→ ) and 

perturbative theory is applicable while for small Q2 (((( ))))2 2Q ΛΛΛΛ≈≈≈≈  coupling 

constant (((( ))))2
Sα µα µα µα µ  is big and the perturbative approach cannot be applied. For big (((( ))))2

Sα µα µα µα µ  

the coupling force is so big that the strength of binding is so big that quarks and gluons 

are coupled into clusters and form hadrons (confinement of quarks). The quantity ΛΛΛΛ is 

usually denoted as ΛΛΛΛQCD and represents a free parameter of the theory. The experimental 

measurements of the strong interaction coupling constant are shown in Fig. 16 and 17. In 



the first of them is shown the dependence of ααααS on transferred momentum µ, while in the 

other (Fig.17)  are shown the measurement of αS at  mass of  Z-boson (µµµµ=MZ ).  

 

 
Fig. 16: The coupling constant of strong interaction as 
function of transferred momentum. 

 

Fig. 17: The coupling constant of strong 
interaction measured at MZ. 

 

From the measurement of the coupling constant of strong interaction for ΛΛΛΛQCD can be retrieved: 
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Index (n) in ΛΛΛΛ(n) means the effective number of quark flavors participating in the studied 

process. 

 

 



Appendix A 

 At calculation of the quantity Iµµµµνννν(q2) it is needed to use the following properties of traces 

of  γ-matrices product: 
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And commutation relations ( µµµµ
µµµµγγγγaa ≡≡≡≡ˆ ) : 

aa

aa2a

abab2ba

55 ˆˆ

ˆˆ

ˆˆ)(ˆˆ

γγγγγγγγ

γγγγγγγγ µµµµµµµµµµµµ

−−−−====

−−−−====

−−−−====

                                                                                  (A.2) 

 

Appendix B: On calculation of divergent diagrams 

 

At calculation of divergent diagrams we come from the calculation of the integral J2:  
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By integration of J2(p,α) through α we get: 
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By differentiation of J (p,α) by α and pµ one gets: 
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