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Amplitude of scattering in 2nd order of perturbative theory

Scattering of electron on static potential
Let us consider the scattering electron in fieldtatic potential (e.g. atomic nucleus).

The transition amplitude of electron from initishte to final state is in 1st order is reads:

p! Ty ==ifax i) 0O m¥(0)
Using | (x) = —€l, y*u, e"'* we get:
T, =ieu, y u, jd4XAy e’ =iel, yu, A, (@) (1)
whereA,(q) is Fourier pictures oA,(x). In
? case of the static potentiaj(x) does not
depend from time:
A, (a) = [t =) [aszan(x)e )
=218(E, -E ) A,(@
Fig. 1: Scattering of electron on static For determination of 3-dimensional Fourier

potential (£ order), electron exchanges pictureA(q) we use the Maxwell equations:
virtual photon with scattering center.

O2A#(X) = -]j#(X) (3)
This leads to
i“(a) =[a*x j#(x)e®  =-[d*x(0?A%(%))e'™ "
perpartes= =q2qd3xA”(7<)e‘q'3 =qG° [A“(q)
The result for the amplitude of electron scattermthe 1st order reads
T, =2m(E, -E, )@, y,u, Erc%gﬂ(q) 5)

The presence a¥~function leads t@s~0 and hencg® = —|q|2. Let us assume that the

static potential is the potential of atomic nucleuth the charg&e. Then the invariant

amplitudee Ze-scattering reads:



-iM =iel; yHu, G_ig%[(—i v (@) = i Py, oL ff-ize) (6)
q q

where j°(X)=zed(x) , j(x)=0
The cross section & Ze-scattering (Rutherford scattering) in first order:

do 2 a* e
o M ~—g a=g (7)

Rutherford scattering in 2" order of perturbative approach (approximation €")

Into e Ze—scattering it is needed to include also diagrants wivertexes. The first of all
we will treat Rutherford scattering in case of fuation of virtual photon to paife (see
Fig. 2).

We expect that after inclusion of thé’2

order of perturbative method the amplituc
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of process is:
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ar
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order will be suppressed by around 10
times. It is true provided that the spinor pe .
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of amplitudes A®, A®) do not differs

alot. We will show that direct calculatioRig. 2:Rutherford scattering in"Zrder —

_ _ ~ fluctuation of virtual photon to pair'e'.
of A® leads to divergence of this quantity.

Invariant amplitude:
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The addition of amplitud®® (~€") to amplitudeM® (~€?) is equivalent to the folowing

modification of propagator (see Fig. 3):

enable to include the effect of virtual pairs

Fig. 3: Modification of propagator that % g B
into amplitude of scattering.
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q q q* q° q* q° q
where

| (@) = j P Tr[ueyﬂ D(—mleyv qq p'; m)] (10)

The problem is that the integrajﬂ,(qz) diverge ap — o (at calculation of, is

needed to calculate tracespahatrices (see Appendix A) and then calculate begral

(see appendix B).

The calculation of the integral , (9°) gives:

Lo (o) =g, (a?) + o (11)
terms ~g,q,
where
(@)= 2] Idz&(l z)In(l q'z(1- Z)j , (12)
3nm p? m?
Iogaritmic:cl’lly d|v«;rges f|n|te part ’

wherem is the electron mass. The terms proportionai,tq, give after summation the

zero contribution to the process amplitude. It @®asequence of calibration invariance of

the electromagnetic interaction that leads to theservation law of charg@y\]”(x) =0
- d,j#(p) =0 (whereqy is 4-momentum of photon that is coupled to theemty H)

and amplitudeM @ has the structurdd ® ~ j#I , j*. The problem we will try to solve



in such a way that in the first we will regularimgarithmically divergent part df(q?),
i.e.in 1(q°) we will changexe - M?

Remark: Regularization means the upper limitation of themmentum ,circulating” in
loop. This limitation means under the Heisenbergq@ple of uncertainty a discrete

structure of space at a level/lM. If as the limit M we took Planck mass

(M, =,/Ac/G =122110°GeV /c* ) then discreetness of space is represented dy th

minimal lengthl , =7/(M , ¢)=1610*°m.

The effects ofe’e” -loops at small transferred momenta
At small momentd -g> <<m?) it is valid:

|n(1_qu12‘Z)j ~ _OIZle‘Z) (13)
m m

In this case th&(q®) reads:
2

a, M* a q
a®) = —In—+—— 14
(q ) 3mr m? 15mm? (14)

The effects ofe’e” -loops at large transferred momenta

At large moment#&-q® >>m?) it is valid:

|n(1—qu2‘Z)j = In(_ q:} (15)
m m

g?) = %Tm(%j—%rm(‘m‘l] = %Tln(iqul (16)

The amplitude of Rutherford scattering at small transverse momenta

and

If into the relation (11) we put insteadIdff) the expression (14) and in the amplitude
(6) we replace the propagator under the schenthéf)the amplitude in the 2nd order

reads:

SN =i =i\, € M2)_ &€ o o (s
iM |eufy°ui|:€q2JEE1 o In(sz sor 7 HOe )J( ize)  (17)

Let us introduce the reduced charge in the follgwiray:




e (M)
eR—e{l 12”2In(m2B (18)

In this case with a precisidd(e") for (-iM) we get:
2 2

_iM =ie.d S i
iM =ie,T, ) u, Eﬁqzltﬁl 0.7 mzj( iZey) (19)

Let us assume that the charge measured in expearangh= 0 (Thompson scattering) is

the reduced chargg then the amplitudM is finite in the 2% order.

Remark. The charge that we have used to express the amplitddés the charge that is

“sitting” in the equation of motion (for motion efectron in electromagnetic field). At the same
time the equation of motion we can treat as thedmge equation of a certain physical system of
fields (in our case this system contains the ed@eprositron field and the electromagnetic one)

with a certain Lagrangian — in our case: the Lagi@mof QED:
. 1
LQED = 'Wy”aylﬂ-mwlﬂWQA,, Wyyw_ZF,qu w)-

The charge ,sitting” in Lagrangian we will call the bare alge that differs from the

experimentally determined charge.

Lamb shift
The first term in the amplitude efZe-scattering (19) is connected with the Coulomb

potential. We can be convinced in this by backwodrier transformation:

d’g exdig¥) Ze?
V = Z¢? = R 20
O(r) eRI(Zn)g |q|2 4” ( )

| d*g=2ng’dgsinsds , qF =[] coss )
The 2%term in the amplitude of Be-scattering (19) corresponds to the effect dfiir

g’e™-pair in propagator:

Ze} d3q - o Zeh .
60#m2q(2ﬂ)3exdlqm) - 60n2m25(r) (21)

The potential acting between the charge of nucaaselectron is:




Ze? Zet
V() = -—R - R _J(r 22
) Ar 6077°’m? ( ) !
%r_J

Coulomb contribution  contribution of virtual pair &~

Remark: Eq. 22 is not exact as we used approximate valu@d) at small(—P).

It should be noted that the contribution of virtyegir in photon propagator manifests
itself experimentally — it leads to the shift oéthnergetic levels in hydrogen atom i.e. to
the so-called Lamb shift. Using perturbative appho¢he additional term leads to the

following shift of energetic levels:

e4

2
AE, = ‘ngz W, )| 8, (23)

Where ¥,(0) is the value of the wave function describing s$t@te of hydrogen atom
with the main quantum number and orbital numbel in the centre of atom i.e. in
nucleus.

The Lamb shift is really observed in the spectrayafrogen atom

Anomalous magnetic moment of electron
The full set of diagrams &* (2" order of perturbative theory) for te&Ze-scattering is in

Fig. 4.
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Fig. 4: Diagrams for theZe-scattering in 2 order of perturbative theory.

The loops in diagram$, ¢ andd, similarly as in diagrama, also diverge. These

divergences could be ,hidden“ in redefined chargass and wave function of electron.



Let us consider the diagramthe loop in vertex modifies the structure of electcurrent

(—eu, y u,):
—ell, yfu, - —el; (yﬂ"'/\ﬂ)ui =
i i (k-4 i (K 24)
N |, s d°%k _-iQ I(k q+m) |(k+m) (
=iu, (iey”)u, +iu, | (ie L7 P Iz v lu
f ( ) f ( ) I(Zﬂ)4 (k+ p)2 (k_q)Z_m2 kg_mz
In thee® approximation and for smalig®) the loop integral reads:
_ a o m 3 aio,
| = —-eu Hl1+— | InN—-—=||-| =—0q" u 25
\ ] —_—

modifikuje naboj modifikuje el.tok

Remark. Them, is small effective mass of photon that was intastlifor removing divergences
at smalllk| (circulating momentum) — under the Heisenbergqppie tom, correspond a length
1/ mythat is an upper limit for the wave length of ghot- it could means a finite dimension of
universe. Ward identity (see below) will show uattthe contribution of diagran) modifying

the charge will be canceled by the contributionshef diagrams (c) and (d), so we can ignore it
in (25).

Let us make the Gordon expansion of electromaguoatient:

+p. w
—eUfy”ui=—eUf[(pf p')u—ia qVJu 26}

2m 2m |

The termg*’q, describes magnetic moment of electron:

ﬁ:——ﬁ':—gis (27)
where S = g/2ag=2 is gyromagnetic factor.
By inserting the Gordon expansion into the ampét(@b), the magnetic moment reads:
e a

p=-—|1+  — g 28
Iz o (28)

2m 2

anomalous mag. momept

Henceg=2+al T If we include also the higher orders of pertunmgxpansion, we will

achieve an excellent agreement with experiment:



= (11596554 33)110°°
g theory

(29)

=(1159657.7+ 35)1107°

g exper
Ward identity

A complete calculation of the amplitude requiredtide intoer (in thee® approximation)
also the infinite parts of the loops shown in Hig.

.—aO-—< (a)

Its clear that the diagran Does not depend on type of scattering
particle.

However in case of the diagranty,((c) and () the scattering particle is a part of loops.
As these loops give contributions to the chargeection there exists a threat that the
charge will depend on type of particle — e.g. tharge €) # naboj /). However the
dependence of charge on type of particle is not obiwed experimentally!

By the direct calculation of diagramb)( (c) and ¢l) it can be shown that the Ward

~<.%~<\ =0 (30)

identity is valid:

—( -

~

Hence modification of charge is carried out onlg doi the polarization of vacuum

(diagrama).



Scattering of theets” - e in €' approximation

The amplitude of the /™ in €* approximation we can get from the amplitudeafe

scattering by the replacementij“(q) E(Ze,o) - ieu, (p)y*u,(p)(see Fig. 5)
—if’(q) 1= (pi) /\\ K (py)

=ij*(a) = iew(pyly u(p))
Fig. 5: Transition from the Ze-scattering to theu-scattering.

If we include into theegscattering thee’-diagrams then we need to work with
renormalization chargegr. The correction to propagator is the same as se cd the
e Ze-scattering:
o, 2,
q q
And it will be the same in all process with photman intermediate particle. At thg

scattering however exist also otlérdiagrams that should be taken into account.

Renormalization

Charge is connected with photon-electron interacticharacterizes its power (Fig. 6):

Fig. 6: Photon - electron coupling is characterizgathargee.

However theepinteraction goes also through diagrams as thosershoFig. 7.



alebo

Fig. 7: Examples of theyinteraction characterized by more complex diagrams.

In Coulomb experiment the charge is measured ailootion of all diagrams. The
charge in the diagram iRig. 6 we will denote as the “bare” charge. This chasgy@ot
identical with that measured in experiment at &gitransferred momentum. The relation
of the charge measured in experime®)tgnd bare charge is given by the diagram

expression shown iRig.8:
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Fig.8: relation between the chaegeeasured in experiment@f:,u2 and bare charge,.

Expression of the experimental charge through #re lbbne assumes that experiment is
carried out at the transferred momentyfns -Q? = -7,

Remark.It should be taken into account that at measurérmértharge in Coulomb
experiment, experimenter assumes that the prosesscribed by one-photon amplitude
Ao (diagram on left in Fig. 8) in that ,seeds” theerimental charge — the cross section

of process is proportional td"4power of the experimental charge:

2
o = e4kflux |AO| kph.space = e4 X Fkin’

coul
As the factor of input currenksy) and that of phase spad@n(spacy are known quantities
by measurement of cross section we measure chilngemeasured charge represents an
effective charge because at its extraction fronsigection, experimenter does not take
into account the higher orders.

If in the relation betweea ande, we restrict ourselves to one-loop approximation:

e? =eZ|L-1(q? =—4?) +O(el)| (31)

or after having made the square (we takd(df® as a small quantity)



e=g[1-11(q? =-4*)+O(e5)| (32)

or expressed by diagrams:

eo
€ - e +0(ed)
¢ ¢ pri @ =4
L]

Fig. 9: The relation between experimental and bhegge in 1-loop approximation.
The inverse relation in one-loop approximation:

e =efl+11(g? =-p) +O(el)| (33)
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Fig. 10: Bare charge vs. experimental one in 1-oproximation
We have found the relation betweerexperimentally determined charge at transferred

momentumy) ande, (bare charge). Let us express now the amplitudeissicattering
(M(ep)) for an arbitrary square of transferred momen@fuising the bare charge.
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Fig. 11: Amplitude of scattering expressed through baregghar

Expressing they through thee we get the amplitude @f+scattering if1(e?)) expressed
through the experimental charge at fix@d=¢/:
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Fig. 12: Amplitude of p-scattering expressed through experimental chargjarsferred
momenturmp? in 2" order of perturbative expansion.
Owing due to the fact that at transition frdffe;”) to M(e®) we in frame of 1-loop

approximation nothing have thrown away, it showddfilled :

M (e?) = M (e?). (34)



At the same time the term of ord#rconsists from 2 parts — one them contains a loop a

Q? and the other g¥ and (in approximation of big transferred momensayalid:

Hence the difference of both parts is finished! Amd see that the expansion of the
amplitude ofew+scattering into series in powers of experimentalrgée gives the finite
coefficients at powers @& (unlike of the expansion is done in powers of lzdrarge).

The free parametgr that have the dimension of mass (transferred mame at
which the charge is defined) arises as a consequahenormalization of charge.

A different choice of scalgs leads to different expansions of amplitude However
|M |2is a quantity proportional to cross section thaeeftannot be dependent on choice of

the scaleu. This independence is expressed by the equaticenofm-group:

am 0 oe 0
—=ly—+pu——1(M=0 36
H du (,Uaﬂ ﬂaﬂ aej (36)

Hence the explicit dependenceMffrom g is compensated by a dependence fsbm

L.

Running coupling constant - screening of charge iIQED

The effect of modification of charge it is possitie determine in all orders of

perturpative expansion what can be expressed bgswdahe diagrams:

LTl

Fig. 13: Charge at a giverQ® expressed through bare chagj®y inclusion of all orders.

The above mentioned geometrical series can be sdramfollows:



-
1+1(-Q?)

e’(Q%) =¢; [ } (37)

e eo
1
This relation means that experimentally determicieatge depends on value of square of

transferred momentun®? at which this charge is determined. The quantity

(2)—e2(Q2)' lled th i I d iritliab big Q? it reads:
alQ == iscalle the running coupling constant and iritlian big Q it reads:

2
1(~Q?) = —g—;’Tln % (38)
From where we get:
a
a(Q?) = a—OQZ (39)
1_70“'1 Y
3n M

If we introduced renormalization scalei.e. reference transferred momentum at which

the charge was determined) and expmshrougha(if) we get:

2y _ (/12)
a@Q)=—TH) (40)
-, Q

3m U
At the expressiom(Q?) we get rid of the parametdt, however we have introduced the

scaleu.

\

AN

Fig. 14: Effect of ee" loops at interaction of two charges.



The running coupling constart(Q?) describes dependence of effective charge on
distance /Q) between charged particles. With increas@®fgphoton ,see* bigger and
bigger charge. From EQ.39 it is clear that the lidrarge is the charge at the ,limit*
transferred momenturdl (or at the minimal possible distance betweengdsl/M). If

we go withM - o then the bare charge becomes infinite (as is seen(39)).

Remark. We took into account only thee* —loops, however at larg€?® their

contribution will give also other loops — the lodpsm pairsy 47, g, etc.

Coupling constant of strong interaction
Before discussion about the coupling constantrohsgtinteraction it is needed to discuss

the question of real and virtual photons.

Real and virtual photons

The amplitude o&zrscattering ( in general in scattering of partiddesndB) reads:

[ =0,
T, = _'jlﬁ(x)tﬁq—:JDf(x)m4x
(41)
- _iJ' 1111+2sz2 +1313 _ZJOJO d*x
q o q
prieén; fotén skalér?ly fotén

If we choose the coordinate system in such a watyGftransferred momentum) is in
direction ofz-axis, i.e.q¥ = (q0,0,0,|q’|), then for the continuity equation we have:
qﬂjg=q0jo_|q|j3=o (42)
If the exchanged photon is almost regl & |d|) then jo =j3 and the contributions of
longitudinal and scalar photons are mutually cdadeFor the truly virtual photon:

o _ G
I3 ‘Cﬂ Jo
ol 100 +i00s L ede | e
=i + al”* x
N —
E,_/

T

(43)

i
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C



T: propagation of virtual photons in states witm#neerse polarization (time-like

propagator).

C: describes immediate Coulomb interaction betwiercharges of particleésandB.
Using the inverse Fourier transformation for thet@ we get

= [R5 (44)

6" 7|

We see thaC does not depend on time and it leads to:

Tgoul =—ildt d3)? d3)? JO (t1X1)JO (t'XZ) 45
P ==ifdtfdox, [d°%, rrER— (45)

Hence the charges of particlk&ndB interact without a delay in tinte

Running coupling constant for QCD

A basic principle of determination of the strongipting constantr, (Q* )as a function

of Q7 is the same as in QED however the result is diacadly different. In 29 order

(for QCD) we have:

¢ Q_ TET CET
N { - _ -
K L
et bne g g- - /u}'?r ﬁﬁcoﬁco v«e,‘/(ajy
Fig. 15: Effect of virtual pairs (gluons and quarksQCD, T is transversal gluon and C is
»,Coulomb* gluon.

The shown diagrams give &tQ? /4 in equation for the coupling constant (see Eq. 40)

the coefficient:

2
W) 2, 5 6], (46)
am | 3 %

aq

whereny is the number of the quark flavors.



Remark: In QED n, =1 (only 1 pair of € € ) the corresponding coefficient ts4/3, as

the definitions ofar and as differs by a factor 2 (given historically).
In general it is possible to prove the theorem:

Arbitrary states that can arise at time-like pragaglead to screening of charge, hence to

the negative coefficient dh (Qz/,uz). The Coulomb gluons (space-like propagator) lead

to the opposite phenomenon.

The coupling constant for larg@® can be expressed (in accoOrdance with Eq. 40) as

follows:
2 as(u’)
as(Q7) = 5 > (47)
1+as(u)(11_2nf)|nféz
ar 3 y7i

ag (Qz) decreases with increasif@j — is getting small at small distances:
Qs = a, (QZ) - 0 (asymptotic freedom).

At small Q? the couplingnis gets big — let us deno®@? = A? - for

2 2

1431120 n A =0 = ayu)=- ar___ (48)

am 3 7] 2 N

11_§nf |n?

If we put a, (,uz) into the expression far (QZ) (47) we get:
amr
as(Q*) = > % (49)
(11_3nf)|n/|2

From where one can see thatQit (Q2 >>/I2) a. (QZ) is small @, (QZ) -~ 0) and
perturbative theory is applicable while for smaf? (Q2 =/|2) coupling

constantrg (,uz) is big and the perturbative approach cannot béeabg-or biga (,uz)

the coupling force is so big that the strength iofiimg is so big that quarks and gluons
are coupled into clusters and form hadrons (confer® of quarks). The quantit is
usually denoted adqocp and represents a free parameter of the theoryeXperimental

measurements of the strong interaction couplingstaot are shown in Fig. 16 and 17. In



the first of them is shown the dependence©bn transferred momentum while in the

other (Fig.17) are shown the measurementsait mass of Z-bosopAM;z ).
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Fig. 16: The coupling constant of strong interatts Fig. 17: The coupling constant of strong
function of transferred momentum. interaction measured atM

Fromthe measurement of the coupling constant of stitegaction for/Aqcp can be retrieved:

AL =234+ 2650 MeV

+39
) =209 - MeV

Index(n) in A™ means the effective number of quark flavors pigiing in the studied

process.



Appendix A
At calculation of the quantityw(qz) it is needed to use the following properties atés

of y-matrices product:

Tr (y“y") = 49*
Tr(yyyy’) = 4[9"°g" +g*°g" " - g g7 ] a1
Tt (v vyy) = 4i g |
Tr(wrty) = 0
And commutation relationsa(= a,y”):
ab = 2(ab)-ba
ay¥ = 2a¥-y*a (A.2)
ay’ = -pa
Appendix B: On calculation of divergent diagrams
At calculation of divergent diagrams we come frdma talculation of the integras:
dk o TS sind I . M?
3 (pa)=[— ;=i kK[ dy[ a9 [ dp— X2=|r12(ln - 2—)
(k2 -2pk+a)” % o o o (k*-2pk+a) a-p .
(B1)
By integration ofl,(p,a) througha we get:
: dk . , 1, 2 M?
J(p,a)—j—kz_zpkw—m{M A Gl (82)

By differentiation ofJ (p,a) by a andp, one gets:



(k2—2pk+ar)2 2 Jdp, Py N 5 (B3)

i dk _ 1% o 1
(k2 -2pk+a)’ 2 Jd%a? - e .
dkik, _ 17%(pa)_ 7T P,
ST Pu (B5)

j(k2—2pk+ar)3 4 dpda 2 a-p

J- dk _ 177 )(pa)  _ ii 1
(k2 -2pk+ a')4 6 Jda’ T 6 (a- p2)2 (B6)
I dk[k'u _ id33(p,a) ~ Ii py

(k2 -2pk+ 0')4 12 dp,da? T 6 (a_ p2)2 (B7)

H _ . v a M 2
= |n2 L(_ _ - 2+_ 2 _ M _11
J(k2—2p|<+a)2 {2 2 “sP TP “)'”a_pz)Jf('na_pz L

(B8)

k2 -2pk+a)’ 12 dp,dp, 4 a-pt) a-p?

dkl:k,ukx 1dZJ , 2
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