On divergences in QED Ver.: 23. 11. 2007

Summary of &e-scattering in? approximation:

1) The diagram for polarization of vacuum
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modifies the propagator of photon to

« The self energy of photdif%(?) diverges logarithmically.

« Problem of divergence we solved in such away thatl (q?) we first regularized:

o M
_[dp--- - Idp--- and then we renormalized charge, i.e. we made répéacement:
0 0

2\

e ey = e{l—siln —2] ander was declared as the charge observed in experiment.
/4

« Working with ez we have shown that effect of virtual paire* modifies potential between

e andZ e and the physical manifestation of these virtuatspa hydrogen atom is Lamb

shift.
The diagram for vertex correction

modifies the structure of electron current—e(, y*u,):
y* o TH =y* + N, this for smallg? leads to:
_ a q*io,,
—er, | ] - {_Q__ﬂ q} u (2)
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In general the™ order of perturbative expansion leads to the failhgy divergent diagrams:
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1) The self energy of photon (polarization of vacuweitingl # = - /7#":

WOW
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2) The self energy of electron:
12(p?) = (i€}’ 4k g i(p-K+m) L 19w ) (4
(2m)* p-k)? -m? k?
The vertex correction:
ie/lﬂ(p,q’p+q)=(ie)3j‘ ok ( _igm J{y” i(ﬁ-lZ+m) D’”E'(lerm)y" (5)
(2”)4 (k+ p)z p_q)z _mz k2 _m2

The shown integrals contain divergences that an®ved by the procedure of renormalization.
We have shown it in the case of charge. The émaval of divergences in QED requires

renormalization of also mass and wave functionasfigle.



Dimensional regularization

Up to now the renormalization was based on theadlg;autoff* regularization. At present it is
conventional to use the so-calldighensional regularizationlIn this regularization the divergent
integrals are calculated D=4 +2¢ (D=4 + &)-dimensions. We will show it on the case of the
vacuum polarization, i.e. integreff’ = —i/7#".

d*k Tr (y”(l2+m)y"(lz—6|+ m))
(27)" (K" -m’)((k=)"~ )

N~ =ie? J’ (6)

First a few words about the technique of calcutabbthe divergent integrals.

The technique of calculation of the divergent inteds
Calculation of traces of ymatrices.For calculation of divergent diagrams of the typgié
needed first of all to figure out tracesnatricesln the concrete for calculation of the quantity

/7,,V(q2) it is needed to use the following propertiesratés of ymatrix product:
Tr ( vy’ ) = 49+
Te(y'yyy) = 4[gg°+ g ¢’ - ¢" ¢°]

(7)
Tr (y“y"} =0
H_/
odd
About the calculation of traces of matrices in moe¢ails can be read in the appendix A.
The technique of calculation of divergent integialbased on a few tricks.
Feynman'’s trick.It is easily to show (see the appendix B — (BB3x:t
1 1
— ! a 2=J'dx 1 2=Idx 1 ~ 8)
(k2-me)((k=a)-m?) o (k*-2kmp+ fx-n) § (K- MY

whereM ? = x2g? = xq? +m? and k' =k —-gx.
The transition to Euclidian integral in D dimensios Typical expression with which we have to

do at calculation of @ order of the perturbative expansion reads:



el

We carry out the regularization of the integrasuch a way that we will do integration of the

term under the integral id dimensions. The function under the integral isamalytic function

with exception of poles¥E = +k? + m?) in variableko. The problem of the poles we have
already solved (see Chapter 7) by moving to theptexnplane ok,. The poles we shifted:
+E - +(E -ig)and make the replacemenf: dk-.. O™ jdk" .-+, where

i C

C= (—oo,oo) O K, K=is half-circumference in lower and upper half-gar ko, respectively.
Asjdk0 =0 = I dkl... = Iim0 dk’-.. then due to analyticity of the function under the
£
K ) C

integral, the contou€ can be deformedC - C' = (—ioo, ioo) O K', whereK’is the half-

circumference in the forward or backward half-plah&,. Usingjdko e = _[ dk’--- one can
C c’

write:

' dk® T dk*  F dkP ! 1
()= [ o] o] o ey

This integral can be transformed to euclidian iraehy replacement:

KO=ik, K=K, d°k=idk, =k?=-kZ =Kk ++(k2?)),
(i, i) = (o.)

It gives:

soyopdok 1 edke 1
1,(M2.a) I(ZH)D(kZ_MZ)a (1)|j(2”)o(ké+Mz)a (10)

The integrallp ( M ?) is finite for D # 4 The idea of regularization is the following: teeuthe
formal terml 5(M?) for D #4 and carry out all needed manipulations — to laxize divergences,
to renormalize fields and coupling constants ara o back t®=4.

Master formula.The calculation in (10) we can carry out as fobojwve use the Euclidian metric

— index ,E* we have omitted):
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d°k 1 _ d®k ~z(k2+ 2)=°° e f APk e
_[( _[2” IdzekM !dzeMI e

2m)” (k*+M?) " (2m) g (2m)°
D/2 2 D—l D ( ) (11)
1 % w2 T M?)2 ~ % -5 1-D/2 21
= dze™" (—) = dte™'t 2 - \1-D/2) M “ )2
R A &) M| e )
If we derive the relation (11) byi? (a—1)-times we get the so-called ,master formula®:
D - b_,
[ Mg D7) (M?)? (12)
(2m) (k2 +M 2) (4m)™" 1 (a)

Remark.In general it can be shown that on the basis efittiegrall , (M 2 ,a') we can calculate all

integrals needed for calculation of the so-calledaint function — see appendix B.

The expression (6) fof7#” can be adjusted by making the Feynman’s tricktaadeplacement

k' =k —gx

MN* =ie? J:EdXJ‘ d*k’ Tr (V”(|2'+dx+m)y"(lz'—EI(1— X)+ m))

o (2n) {[(k' +ax)° - mz](l— x)+[K = a(1- x)] ><}2

The terms proportional t&' do not give any contribution to the integral (18chuse they are odd

(13)

functions of the integration variable. The denortonaf the term under integral can be adjusted

in the following way:
{--}=Kk"?+*x(1-x)-m? (14a)
And numerator in that integral is:
Tr[-+] = [ (ki +a,%)(K; —q,(1- x))]Tr(y"y"y"y”)+m2Tr(y”y") =
= [Kokp = x(1-x)0,0, |4( ¢ " - ¢ & + ¢° &)+ M4 ¢ = (14b)
=4[ &k =2t - ¢ ) x(1- x)- ¢ K2+ d X2 %) ) ]

Where we have exploited the properties of tracgsmétrices (7) and—" means that we
omitted from the expression the terms proportiead' that do not give any contribution to the

integral.

If we do the replacemert’ - k and seM? =m?-qg°x(1- x), the expression (13) reads:



HIv 2(9“q" - g 1- X v
- 4ie? J‘dXJ- 2k“k - (q q-g qz)j( )_ 2g : (15)
0 271 ( 2) (k 2_M 2) k=M
The integral (15) we solve by goingBedimensional space and by subsequent applicatitimeof
.master formula” and its modification (appendix B7-10) :

d°k  2k“K*  _ ., T(1-D/2); 2

= (C-m?) (4 (M7)
d°k 1 __T(2=D/2) 53

J @) (k2 -m2)’ (4m)"? (M) (16)
d°k g ,T(1-D/2)) 12

I(271)D EVERELY (4m)°? (M7)?

From (16) it follows that the first and third teimexpression (15) are mutually cancelled and it
leads to

M =8 (o of - ¢ ) g—)/u 3 M)

At the transition td-dimensional space we introduced an arbitrary sgalet has the

(17)

dimension of momentum and was introduced to makegehdimensionless also after the

transition intoD-dimensional space (see Appendix C). Now welet4-¢ and use:
r(2-p/2) =F(£)=g—y+0(£)
2) €
(Mz)_gzl—fln(M ?)=1-£ In(m?-q%(1-x)) 8|1
2 2

wo ()|

ot~ (oG 720

wherey =0.577... Euler's consta

For the quantity7" we get:



n~ =2e7(q”q"— gthZ)E- )(1+§In(4izuz))j: dx X(1- x)(l—len( nf- ¢ X1- x)))
=& (¢q - gtqu)E-yHn(me)){%—fzi dx X1~ Qin( M- § X1~ »)J:

=%(q”q"— gf‘"qz)(g—y+ln(4n)—ln%—6j; dx X1- x)In(l—% Kl‘X)JJ

(19)
The term proportional tq“q” does not give (after summing) any contributiomhi®

process amplitude due to conservation of curigt€0), therefore/? reads
n* (o) =-g"z" () =- ¢* ¢’ ( o) (20)

where for the transversal self energy of photorgete

ZV

12an[_—y+|n(471)—|n'uﬁ—doxx(l x)In(l—i x(1- X)D (21)

Using the relations (1) and (20) for the photonpaigator in 1-loop approximation we get:
) v ZV
o (@) =-i S -] L= q(‘“ (22)

The case of small transferred momentufii’/<<m?Z. In this case one can write:

2 2

In (1—% x(1- x)) = —% x(1-x) and for correction to propagator we get:
e (2 m’ (23)
n’= —=y+Indm- In—+6— dx x*(1- x
121 [a 4 u -[ (1=x) J
This leads to the following photon polarizationvatuum:
2 m2 qZ
M) =2 S-y+inar-in T+ 24
(@) 3”(8 y e 5m2] (24)

The case of big transferred momentuf@/A> nt.

yooy_ a2 m? |q2| 5. .
M (@*)=—| =-y+ndm-In—+In| — |[-=+im &) (25)
3| € y7i 3

m
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=Inx(1-x) +InF +im0(9%)

_ 2 2 _ 2
We usedin € X)Cl ML X Z()q

Electron self energy
At the calculation of electron self energy we widl, similarly as in the case of polarization of

vacuum, td (= 4—5) dimensional space:

K+ m) “p-k+mly
- ie H O Ow Z(p)=-ie’u* D £
IZn d Ij(p k)’ e k? (p)=-le"u E[‘Vp k) —m]k2
(26)
Having introduced the Feynmann variabl@see Appendix B2-3), we have:
y* (f) —Kk+ m)yﬂ 27

ot an dPk
Z(p)=-ie El:dz,u J.(Zﬂ)Dﬁ(p—k

After the replacemenk - k'- pz and taking into account the fact thaCirdimensional space

)Zz—mzz+k2(1—z)l2

is valid:
y*y,=D, yay*=(2-D)a (28)
For the electron self energy we get:

2

1 2
Z(p)=-i e_2 l(- f)+4m)+ f)(1+y)—2m(1+2y)+ZIdZ p(1-2)-2m+In M 5
(4n) | d Ay
129
where M > = m?z- p®z(1-2)
More details about the electron self energy cafobed in Appendix C.
Vertex correction
In an analogical way as above it is possible towtate the vertex correction:
b K+m k+m
—ieu ™24, (p.a,p) =~{eut ™2 f [ o=k o=+ mly (30)

(@m° K2[(p-k)F -m2](p - k)Z - m?]
Using the 2-parametric Fenmann’s formula (see AgpeB)

1
—=2|dx |d
abc '! x! y[a(l—x—y)+bx+cy]3




We get

A, (p.a,p) = 12624 J‘dXJ' dyj V,,(f)' I2+m)yy(f3 I2+m)yu

(31)
; (2ﬂ) k2 =m2(x +y) - 2k(px + py) + p2x+ 2y
After introducingk’ =k = px — p'y and after renaming of integration variabl€  k ) we have:

A (P, p) = i2e’u® Dfdxg dyj(zﬂ)

(32)
Vv(p(l y)— px - k+m),,(p(1 X)-py- k+m)y
[kz-m (x+y)+p’x(1-x)+p?y(l-y)- 2p|oxy]

The expression (32) contains a finite as well dvargent part (the part of numerator containing

k? diverges therefore we can write:
N, =AD + AP (33)

where the divergent parl/lf}’) using (B10 — Appendix B), can be expressed irfaha

o M (2-
A, (p.a, rf)— ( zajdxj dy
i (34)
yvy,,y,, vy
/
[m (x+y)- PX1- Y- B2y = Y+ 2pbxy
Now using the fact that
VoY Yuyy' =(2-D)y, (35)
and expressinP=4-Z¢, the divergent part of the vertex correction reads
eZ inite
AP(p,g P)=—5y, + A" (p g B) (36)
(4m)" €

The convergent par#],, does not contaik in the numerator and it converges so we cabsét

and to integrate (oveq). It will give

(37)

Id p'(L-y) - px+m)y, (B(L-x) - Py +m)y”
[m (X+y) p?X(1-x) - p'?y(1-y) + 2pp'xy[ "




Conception of renormalization

From Ward Identity, that is a consequence of ciurtenservation in QED, it follows that
from the all one-loop diagrams"f2order of perturbative expansion) only the polaitra of
vacuum contributes to the charge change (changewgiling constant in vertex). Let us assume
that charge is measured in Thompson’s scatteriigd):

— o 2
Somys
Gihomp L7

epl\,as

. o

Then the amplitude in the process in tHe arder of perturbative expansion we get from

the amplitude of the®lorder:
iey* - ie[ 1—%/7’(0)]%‘ (38)
Hence in cross section for Thompson’s scatterirgyeths the quantila{l—%ﬂy(O)] - it

represents the physical charggné ) and not the quantity that is in Lagrangian. Efiere the
guantity that ,sits“in Lagrangian we will denote@sand will call it ,bare” charge. If the physical
charge énys ), we will denote it a®, we measured ar=0, then the relation of barepj and
physical charged] is:

e0=e+5e=e[1+%/7”(0)] = %=%/7”(0) (39)

The recipe for the renormalization procedureis the following: physical charge in Lagrangian

we replace by bare charge:- e, = e+ deand then we carry out the expansiorden

Let us consider a scattering or an annihilatiorcess that goes through photon exchange in one-

loop approximation. The amplitude of scatteringtif@ut external fermion spinors) is:

10



3;[ UGS )]2 %[1+ zie—ny(of)]=g[1+ny(o—ny( a)]

q q (40)
== [1- A7)
q
The quantity
11(9°)=17(9%) - 117(0) (41)

Is called the renormalized polarization of vacuurd & finite also foD - 4 Using the relations

(24) for small transferred momentaf << m?):

2

q
@)= 42
(@*) 37 Em? |
For large transferred momenta (see Eq. 25) we/@g{>m?):
A7) =2 2o 29 )+ i () (43)
3m\ 3 5m?

At large/f>[7to one-loop correctiomvill contribute not only electrons but also otherrhions

with chargeQs . An interesting case occurs whem® = M2 (M is the mass aZ-boson):

5 2y — 2 @ |5 _ M7 : 2
/7V(|\/|Z)_zf:Qf 3”{3 In(szJHnG(q )J (44)

The total fermion contribution to the real partloé renormalized propagator is:

Re/77(M2%) = -0.0602+ 0.0009
The polarization of vacuum can be treated eithea esrrection of propagator or as a correction
of charge — in latter case a conception of runmingrge or running coupling constant. For the

running charge we can sum the contributions obaeérs (see Chapter 8 Eq. 37):

e2

(@)= 1+Re/7%(q%) (49)

It corresponds to summing of geometrical seriesasmting a series of amplitudes with different

number of loops.

11



Renormalization in QED

The conclusions for the divergent diagrams corredjpg to the electron self energy, photon self

energy and vertex correction after regularizatien a

2

2(p) =1 (~D+4m)+ 2™ (p) (46)
e’ ini
17,,(q) =m(—gwq2 +0,9,)+ 775" (p) (47)
’ e’ (finit ) ,
Ap(p’qlp)=myy+/|p (piqlp) 8§4

The diagrams (46-47) we have obtained starting fragrangian QED:

Laro =D=My ~cQNGy, @ -1 FuF ™ =2 (0,A%) (49)

Ly

1 Ly
Presence of the divergent parts in (46-48) meaaisthie quantitiegy, m, e, A, present irLgep
are not the physically observable quantities btitetaother quantities — we will call them ,bare”
guantities and we will provide them with the suffix Their relation to physically observable
guantities can be expressed as follows:

Wo =2, A =Z7A,

m,=2Z,m e =72.6

(50)

Where the quantitieZ; can be expanded into Taylor series in powers oasgof the physical
chargee”:

Z, =1+&5Z (51)

Propagator electron
If we start from the Lagrangiadngep (49) then the full electron propagator (dressexpagator)

reads:

_ .

o
~iL) i

)
ot

12



ISt (p) = faim+|51m( IZ(p)) m e S b—ml——z'(p) (52)

The effect of loop manifests itself as an additoemhe mass of electron. The problem is that if in
Loep are physical quantities then due to presencEjof, propagator contains divergent part. Let
us now suppose that inkgep go the bare quantities, which we express throhgtphysical ones
using the relations (50) and (51). It is sufficiémttake into account only the fermion part, of
LagrangianLogp.

2 6m +e°0Z,)myy (53)

(L), =@ 8-y, = (1+€25Z,)Fidy - (1+e
The full propagator expressed through physical tiias can be obtained from (52) by
replacementp - (1+ ezc)'Z,,) Pa mo ( W éd—m+ & zj r
m

Hence the full propagator reads:

St =(1+ €52, (]:I- é%m+ & zj M3 =

(54)
e ). om & .
=l1+e€’0Z, + | +85"+ 85 7 + e 5 finit)
( % SITZEJ g ( m ¢ 277%:)
The expressions for the bare quantities we cafr@getthe condition of finite value of expression
(54):
1 om 1 om 3
0z, =- , +0Z,+—=0 > —=—-———"— 55
Y 8re m € m _ 8r% (55)

This leads to the following relation between theekend physical quantities:

t,UO:\/Z:(l—

e’ _ (., 3¢
zzze]w’ mf"mwm‘(l nzaJ 56

And the full propagator reads:

-m- Z( finit)( p) (57)

iS’F(p)=b

13



Schemes of renormalization

In general for the vacuum polarization it can bétem:

17(a*) =AY (p*) + k(e / u?) (54)
where the divergent pafit7'(u?) can be reabsorbed inrenormalized coupling cohstan
(charge). The decomposition (54) can be done inyndéfferent ways. The way which we take
will defined renormalization scheme:

(a,
3

ArTY(u?) =4 %T,u'”[%] MS - scheme (55)

2e| 1 _ B
H [g y+|n(4ﬂ)+3] pu—scheme

MS-scheme

aO -2¢€ 1 +
— ——-y+In(4rm
o [5 y+In( )]

2
3 H i —scheme

2

17.(9% 1 11?) =<ﬂ{—ln[_ﬂqz )—y+|n(4ﬂ)+%} MS -scheme (56)

) MS-scheme
ﬂ#'z{—ln( q2)+%}

2

Using a = e?/(4m) in QED we can write (the amplitudié(q?) ~ e—z{l— ﬂy(qz)}):
q

a a.(u?
q—g{l—an:(uZ)—ng(qZ/yZ)}s%{l—ng(cf/m},
(57)
a, 1 &
aR()uz)=a0 1+§T'u (E-l-cscheme) ) aO =ZT

where similarly as in case of the ,cut off‘ renotimation, a, is the bare coupling constant, that
is not directly observable. After redefinition cdimg constant the scattering amplitude is finite,

hence in experiment is measured the renormalizegliog constantr.

Appendix A.At calculation of vacuum polarization, electronfsglergy or vertex function it is

needed to use the following properties of tracegrahtrices product:

14



Tr (y“ y ) = 49*
T (ryry) = 4[gvg ¢ g - ¢ ¢7) an
Tt (v vyy’) = 4ighe
Tr (ysy“y") = 0
and the commutation relationa € a,y”):
ab = 2(ab)-ba
ay¥ = 2a*-y*a (A2)

& = -y

Appendix B: On calculation of divergent diagrams

The integral corresponding a Feynmann’s diagranthestructure:

_ f (k) dk
= a0 a0 (D

wherea;(k) are polynomials of second degree &l is a polynomial ofn™ degree.

At the calculation is used:

Z

1 1 Zy-1 1
————=|dz|d dz _ B2
a.a,---a, ! 21'(')‘ “ 'r[ “ 2[alzn—l+az(zn—1_Zn—2)+"’+an(1_21)]n ( )
For n=2:
1 dz
= B3
a,a, J; [alz+a2 (1—z)] (B3)

From the view point of the dependencekofmomentum of integration) it is needed to make the

replacement:

1 = c : (B4)
[az.. +a,(z, - 2,) ++a,1-2)]" [k-a)’+d]
wherec, a, a are functions ofy,...,z,.
Putting (B2) into (B1) we get:
1 Zh_
| =(n-1)![dz-- [dz,,3(,-.2,) (B5)
0 0

15



where

f(K)
J(z,-z_,)= dk—n
(z+ 20) = mar o5

For calculation of higher orders it is sufficientknow the integral (dimensional regularization):

2\ _ ¢ d°k 1 __,,iM 2 -
‘Ja(M )_I(ZH)D (kz—Mz)a_( 1) (477_)0/2/_(a) (M ) (B7)

(B6)

The general case of scalar integral (see furthreer)be transformed by the replacemient k+p

to the caséd, (M ?):

) d°k 1 «. M(a-D/2) , N\2-a
J, (p,M?)= . —=(-1)"i—F— (M?+p?)? B8
"(p ) I(271) (k2+2kp—M2) 1) I(4n)/ r(a) ( p) (59
Differentiating both sides of B8 iof we get:
d°k k . I(@-D/2) ; ,. ,\2-a
] =(-1 — 7 (M2 + p?)? B9
I(271)D (k? +2kp-M?)” () IIO"(471)'3/2/'(41)( ) (®9)

Differentiating both sides of (B9) ip” we get:

J- d°k KK, _
(ZIT)D (k2 +2kp- Mz)a

ar(a-2)ete (e w)r(a-1-2)] w0

rfea®)
ogR (-1)" = g¥——mr—=2(M?)2™ "
Appendix C: Dimensional analysis
Let us consider a physical system in D-dimensicpalce. Let us assume thvais a momentum

unit, then the action of the system should be:
[[a°xn)]=A" = [L]=2° ([d°x]=1") c1

Scalar field:
D=2
2

(0,909 |=1" = [p]=1 C2

16



Spinor field:

(gay]=1" = [W]=A+ C3
Electromagnetic field:

[F~F,]=[8,A0*A"]=1" = [A]=A¥ C4
Interaction term:

[ Ap)=n® = [d=n* cs

4-D

If we assumd®=4-gand in the interaction term we do the replacengent.ey > = eu

VLY

, then

the charges will stay dimensionless.
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