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Basic principles of QCD - the role of colored charge           

 
    Up to now we have assumed that quarks play the role of partons in proton. However in 

reality almost 50% of momentum of proton is carried by gluons. Therefore we will 

assume that partons are quarks and gluons. To take into account the role of gluons we 

need to go beyond the frame of the „naive“  parton model and take into account colored 

charge of partons. 

    Theory that deals with dynamics of colored charge is quantum chromodynamics 

(QCD).  The basic principles which QCD is relied on are: 

• Quarks have not only the electric charge but also the colored one (R,G,B). 

• Exchange of colored charge is carried out by means of gluons. 

• The „colored” interactions are analogical to the electromagnetic ones: 

Feynmann’s diagrams we get by the replacement sα α→  in each vertex, 

hence the structure qqg is formally equivalent to eeγ. 

• Gluons carry colored charge, hence they can interact between them. 

• At small distances (big Q2 ) the coupling constant of  strong interaction αS is small  

− hence the perturbative theory is applicable. 

We will show how will be change the picture of the ep-scattering, when we take into 

account the dynamics of colored charge. The basic manifestation of the gluon dynamics 

are: 

• Quark can radiate gluon before and after interaction with virtual photon. 

• Target gluon can give a contribution through production of pairs: * g qqγ → . 

The basic manifestation of the gluon dynamics we get if into the ep-scattering we include 

process of order ααS (see Fig.1), and not only electro-magnetic processes (processes of 

order α). 
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Fig. 1: Including of processes of the order ααS into the ep-scattering. 
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Consequences of inclusion of the processes of order ααS

 

The main consequences of inclusion of the processes with gluons are: 

• Scaling violation for structure functions. 

• Quark of final state will non-collinear with virtual photon, hence his pT ≠ 0  (with 

respect to direction of  virtual photon). 

The ep → eX cross section is given by the inelastic formfactors: 

 ( ) ( )  a  2
1 1 2 2,F MW Q F W Qν ν ν= = 2, ,                                                           (1) 

That after inclusion of processes of order ααS into the ep-scattering the formfactors will 

be the functions of ( )p q Mν = ⋅ and ( )2Q q= − 2 , what is a consequence of the scaling 

violation and not only the function 22M Qω ν= .  

For the relation between the proton and parton cross section ( ) is 

important to realize that in deep-inelastic limit is valid: 

vs  * *p partonγ γ

   a  2
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σ σ

+
= =                                                                          (2) 

where σT, σL are cross section of absorption of transverse and longitudinal photons and 
2

0 4 sσ π α= . The relations (2) refer to the γ∗-proton and not to the γ∗-parton cross 

section. To go to the parton level, let us consider the process of gluon radiation 

q qgγ ∗ → . A comparison of the proton and parton scattering is in the following table: 

γ*protón → γ*partón 

p → ip yp=  

2

2
Qx
p q

=
⋅

 
→ 2

2 i

Q xz
p q y

= =
⋅

 

The relation between 0Tσ σ (proton scattering) and 0ˆ ˆTσ σ (parton scattering) is: 

( ) ( )
* *

2 21 1

0 00 0

ˆ, ,
( ) ( )

ˆ
T T

i
i

p i

x Q z Q
dz dy f y x zy

γ γ

σ σ
δ

σ σ

⎛ ⎞ ⎛
⎜ ⎟ ⎜= −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∫ ∫
⎞
⎟
⎟
⎠

                         (3) 

where  fi(y) is the structure function of parton “i” in proton, i.e. the probability density of 

the hit parton to have relative momentum y,  
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( 2ˆ ,T )z Qσ  is the cross section of absorption of transverse photon by parton with relative 

momentum y including also the processes of the order ααS , 

δ(x−zy) provides that the variable x (characterizes γ*p-process) will be fixed: parton after 

interaction (absorption of γ∗ and radiation of gluon) will have the momentum 

. After the integration through z we get: out i

proton parton

p xp zp
γ γ∗ ∗

= =

( ) ( )
* *

22 1

0 00

ˆ ,,
( )

ˆ

x
T yT

i
i

p i

Qx Q dy f y
y

γ γ

σσ

σ σ

⎛ ⎞⎛ ⎞
⎜⎜ ⎟ =

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∫ ⎟                                                    (4) 

 

Gluon emission 

The QCD-process *q qgγ → is from the view point of „diagram structure“ analogical to 

the QED-process *e eγ γ→ . For example diagram in Fig. 2 has a similar structure as the 

diagram for Compton’s effect (Fig. 3): 

Fig. 2: The diagram of the process  and diagram showing the flow of colored charge. *q qgγ →

 

The square of module of  ampli-

tude summed through final 

spins and  averaged through 

initial spins reads (5): 
2

2 2 232 u s tQM
s u su

πα
⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠

 

Fig. 3: The diagram Compton’s scattering – the amplitude expressed through Mandelstam’s 

variables (Appendix A). 

 

 4



The amplitude for the process *q qgγ → we get from the amplitude of the process 
*e eγ γ→  by the replacement: 

• 2 2
i Seα αα→ , 

• We introduce the „colored“ coefficient 4/3, 

• We carry out the replacement u t↔  that is connected with different order of 

emerge of final particles (if compared with the eγ*-process) ⇒ line of original 

quark goes into final gluon, while in the *e eγ γ→ it goes into final electron. 

Therefore the amplitude of the process *q qgγ →  can be expressed as 

2
2 2

ˆ ˆ ˆ4 232 ˆ ˆˆ ˆ3i S
t s uQM e
s t st

π αα
⎛

= − − +⎜
⎝ ⎠

⎞
⎟

ˆ

,                                                               (6) 

where are related to partons.   a ˆˆ,s t u
 

Why the coefficient of 4/3? 

 Each colored line can carry 3 colors (R, G, B) . at the same time radiated gluon can be 

one of the 8 different bi-colored  charge combinations ( the color singlet does not carry 

colored charge). The averaged through 3 colored initial state gives 8/3. The factor 2 if 

compared with Eq. (6) is a consequence of „historical“ definition of αS. 

Now we will be interested in the transverse momentum of quark (interacting with virtual 

photon) with respect of direction of virtual photon cosTp k θ′= ⋅  (see Fig. 4). 

It is valid: 

 

2 2
0ˆ 2 2 4

ˆ 2 (1 cos )

ˆ 2 (1 cos )

s k k q Q k

t k k

u k k

θ

θ

2′= + ⋅ − =

′= − ⋅ −

′= − ⋅ +

(7) 

ˆˆ, ,s t û  are Mandelstam’s variables 

on parton level. 

Fig. 4:  radiation of gluon by quark. 
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From the relation (7) it follows 

( )
2

22

ˆˆ ˆ

ˆ
T

stup
s Q

=
+

                                                                                             (8) 

At small scattering angle ( ) we can write: ˆ ˆt− s
2

2

ˆˆ 4,
ˆT

stp d
s Q s

π
= − Ω =

+
2

ˆ Tdp                                                                    (9) 

If we use the relation between cross section and 2M , for small angle we get: 

( )2 22
2

2 2 2

ˆ281 1 ˆˆˆ ˆ ˆ16 3
i

S
T

s Q Qed M s
dp s s t s

πσ αα
π

⎛ ⎞+
⎜≈ = − +
⎜
⎝ ⎠

⎟
⎟

                              (10) 

Introducing the variable 
2 2

2ˆ2 i

Q Qz
p q s Q

= =
⋅ +

 we have: 

 
2

02 2

1ˆ ( )
2

S
i

T T

d e P
dp p qq z

ασ σ
π

≈ −                                                                        (11) 

 
where    

a  
2 2

0
4 4ˆ ( )

ˆ 3 1qq
1 zP z

s z
π ασ

⎛ ⎞+
= = ⎜ −⎝ ⎠

⎟

p

                                                            (12) 

Pqq is probability density of quark to radiate gluon and thereby to decrease its momentum 

z-times ( ). p z→

The singularity at z → 1 is connected with radiation of soft gluon (infrared catastrophe).  

It is possible to show that the singularity will disappear if we take into account also 

diagrams with virtual gluons. 

The process *q qgγ →  gives the main contribution for . In other cases it is needed 

to take into account also the process of creation of 

ˆ ˆt− s

qq  pairs (see further). 

Experiment univocally confirms that radiation of gluon leads to existence of quark 

and gluon jet in final state and their directions does not correspond to that of virtual 

photon. An example of distribution of hadrons, in , coming from the interaction μN is 

in Fig. 5. 

2
Tp
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Fig. 5: Distribution of hadrons coming from the interaction μN in . 2
Tp

 
In parton model without gluons are all jets collinear with virtual photon (slashed line in 

Fig. 5) – a small transverse momentum is a consequence of coupling of the  interacting 

quark to other quarks. 

 

Altarelli – Parisi (DGLAP) equation 

 

The cross section of radiation of bremstrahlung gluon is (see the relation(11)): 

( )
2 2

ˆ ˆ4 4 2
* 2 2

02 2

2
2

0 2

ˆˆ ˆ ( )
2

ˆ ( ) ln
2

s s
ST

T i qq
T T

S
i qq

dpdq qg dp e P z
dp p

Qe P z

μ μ

ασσ γ σ
π

α
σ

π μ

→ = ≈

≈

∫ ∫ ≈

                                        (13) 

where we used the fact that ( )2 2

max

ˆ 1
4 4T
sp Q z

z
−

= =  and that at large Q2 is valid: 

2ˆ
ln ln

4
s Q≈ . The integration from μ2 means that we do not takeinto account the soft 

gluons. 
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The cross section of γ*q-interaction including also radiation of gluon reads: 

 

 

( )2
2 ,F x Q

x
=  

                                

 1 2
2

2( ) 1 ln
2

S
q q

q x

dy x x Qe q y P
y y y

α
δ qπ μ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∫                           (14)

The proton structure function F2 is not only a function of variable x, but also of Q2. The 

dependence on Q2 is only logarithmic however it leads to violation of the Bjorken 

scaling. This violation is a result of gluon radiation. The fact that the structure function 

F2 is not only a function of  x, but also Q2 is well demonstrated in Fig.6. 

Fig. 6: The proton’s structure function F2 as a function of Q2 for different x intervals. 
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Evolution of quark densities 

 
The equation for ( )2

2 ,F x Q x  we can write as follows: 

 

( ) ( )( ) ( )
2 1

2 2 2 2
,

( ) , 1 ( ) ,q q
q qx

F x Q dy xe q y q y Q e q x q x Q
x y y

δ
⎛ ⎞ 2⎡ ⎤= + Δ − = + Δ⎜ ⎟ ⎣ ⎦⎝ ⎠

∑ ∑∫   

                                                                                                                                     (15) 

where  

 ( )
12

2
2, ln ( )

2
S

qq
x

Q dy xq x Q q y P
y y

α
π μ

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
∫                                                                (16) 

 

Hence the quark density q(x,Q2) depends on Q2 (see Fig. 7). 

 

 

Fig. 7: Dependence of  quark density on Q2 of virtual photon. 

 

At a certain photon starts „to see“ parton structure of proton. If quarks would not 

interact the picture of proton structure would not be changed. According to the QCD due 

to the strong interaction each quark is surrounded by cloud of partons − this fact must be 

“seen” by photon at . If we express the change of quark density Δq from the 

interval we get: 

2
0Q

2
0Q Q2

2lnQΔ

( )2 1
2

2

,
( , )

ln 2
S

qq
x

dq x Q dy xq y Q P
d Q y y

α
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫                                                                (17) 
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It is the evolution Altarelli–Parisi equation (now usually Dokhshitzer-Gribov-Lipatov-

Altarelli-Parisi, DGLAP). Its interpretation is the following: quark with a relative 

momentum x (left side of equation) can arise from a quark with a bigger relative 

momentum (y) that has radiated gluon. 

The significance of DGLAP is in the following: if we know the quark structure function 

at a certain we can calculate it at any other Q2
0Q Q= 2 2 using DGLAP. 

 

Production of pairs by gluon 

 

Up to now we have taken into account the process *q qgγ →  that gives the main 

contribution for . In other cases it is needed to take into account also the process 

of 

ˆ ˆt− s

qq  pair production by gluon. Gluon of proton can interact with virtual photon by 

means of the process * g qqγ → (see Fig. 8). 

Fig. 8: Production of qq -pairs  at interaction of virtual photon with gluon of  proton. 

 

The amplitude of process we get from the amplitude of Compton scattering by the 

replacement . ˆŝ t↔ −

 ( )
2

2 2 2
ˆˆ ˆ1 232 ˆ ˆˆ ˆ2q S

u t sQM e
t u t u

π αα
⎛ ⎞

= +⎜
⎝ ⎠

− ⎟                                                        (18) 

The contribution of the mentioned process to the structure function of proton is: 
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( )
*

2
2 ,

g qq

F x Q

x
γ →

=  

                                   

 
 
 

 1 2
2

2( ) ln
2

S
q qg

q x

dy x Qe g y P
y y

α
π μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∫                                (19)

 
Where g(y) is the density of gluon in proton and  

( 21( ) (1 )
2qgP z z z= + − )2  ,                                                                             (20) 

is a probability of gluon to annihilate to qq pair and at the same time the quark carries the 

fraction z of his momentum. 

The process *q qqγ →  modifies the DGLAP in the following way: 

( )2 1
2 2

2

,
( , ) ( , )

2ln
i S

i qq q g
x

dq x Q dy x xq y Q P g y Q P
y yd Q

α
π y

⎡ ⎤⎛ ⎞ ⎛ ⎞
= +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫                    (21) 

where i is the type of quark, g-term take into account the probability of quark with the 

momentum fraction x can be a result of creation of qq  pair by an initial gluon with a 

momentum fraction y ( > x ) – this probability is ( )qgP x y . 

A similar DGLAP it is possible to write also for gluon density ( )2,g x Q : 

( )2 1
2 2

2

,
( , ) ( , )

2ln
S

i g q g g
x

dg x Q dy x xq y Q P g y Q P
y yd Q

α
π y

⎡ ⎤⎛ ⎞ ⎛ ⎞
= +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫                     (22) 

The sum through i is taken through all quarks and anti-quarks of all colors and 

1( ) 6 (1 )
1gg

z zP z z z
z z
−⎛= + + −⎜ −⎝ ⎠

⎞
⎟                                                             (23) 

If we neglect the masses of quarks then Pgg does not depend from index i. 

 11



Physical interpretation of the function P 

Let us consider the process ep → eX at large Q2 and let us assume a possibility of gluon 

radiation by interacting parton. Due to this process there occurs a change of quark density 

in proton. And in accordance with (15) we can write: 

( )
1 1 2

2 2
2

0 0

1 1
2 2

0 0

( ) , ( , ) (1 ) ( ) ln ( )
2

( , ) ( , ) ( )

S
qq

qq

Qq x q x Q dy dz q y Q z P z x zy

dy dz q y Q z Q x zy

α
δ δ

π μ

δ

⎡ ⎤⎛ ⎞
+ Δ = − + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤= Π −⎣ ⎦

∫ ∫

∫ ∫
      (24) 

                                                                                                                                      

where    
2

2
2( , ) (1 ) ( ) ln

2
S

qq qq
Qz Q z P z

α
δ

π μ
Π = − +                                                           (25) 

it is possible to interpret as a probability density to find in quark a quark carrying the  

fraction z of momentum of the original quark in the first order in αS. The term δ(1−z) 

means that quark will stay without any change (does not radiate gluon).  A problem of the 

relations (24, 25) is in the following: 

1. there are not included the all needed diagrams giving the contribution  ~ αS − we 

take into account only the diagrams with radiation of real gluon. 

2. The quantity  
24 1( )

3 1qq
zP z
z

⎛ ⎞+
= ⎜ −⎝ ⎠

⎟ diverges for z =1 (infrared catastrophe). 

The problem can be solved if we take into account also the diagrams with virtual gluons, 

concretely it means the first term (14) we replace by an extended term: 

 

This term gives a contribution of order ααS  that corresponds to interference of the first 

diagram with the diagrams containing  virtual photons. The contributions of the 

interference terms exhibit also a singularity at z = 1 and moreover this singularity is 
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exactly canceled with singularity present in (25) – due to the so-called. Block–Nordsiek 

theorem (Appendix B). Practically, singularity of type 1/(1-z) of function Pqq is regulari-

zed by introducing the so-called „plus“-distribution that is got by the replacement: 

( ) ( )1 1 z 1 1 z +− → −  

where 1/(1-z)+ is defined to be valid: 

( ) ( ) ( )
( ) ( )

1 1

0 0

f z f zdz dz
1 z 1 z+

−
=

− −∫ ∫
f 1                                                                    (26) 

After introducing the virtual correction the quantity  ( )qqP z  is modified as follows: 

 
24 1( ) 2 (1 )

3 1qq
zP z z
z

δ
+

⎛ ⎞+
= +⎜ ⎟−⎝ ⎠

−                                                                  (27) 

where δ-function is a consequence of presence of virtual correction. 
 

Appendix A. Mandestam’s variables 

Let us consider two-particle process (in input as well as in output channel there are two 

particles). The process kinematic variables can be alternatively presented by the so-called 

Mandelstam’s variables: 

( )

( )

( )

2

2

2

s k p 2k p 2k p

t k k 2k k 2 p p

u k p 2k p 2k p

′ ′= + ≈ ⋅ ≈ ⋅

′ ′= − ≈ − ⋅ ≈ − ⋅

′ ′= − ≈ − ⋅ ≈ − ⋅

′

′

)

                                                                      A1 

where  are momenta of input (output) particles. (, ,k p k p′ ′

An advantage of the variables s, t a u is the fact that they are invariants of the Lorentz 

group. 

 

AppendixB. Block –Nordsiek  theorem1

The infrared singularities of diagrams with real and virtual diagrams are mutually 

canceled. Let us consider the process . In the first order of perturbative theory 

it is needed to take into account the processes 

e e h+ − →

and  e e q q e e q q g+ − + −→ → . Let us 

further assume that gluon has a small mass mg, then for the cross sections of above 

mentioned processes we get: 

                                                 
1 V.M. Braun, Application of QCD 
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The process e e q q+ − → with virtual corrections: 

 

 

e e qq
σ + −→

=  

 
               = ln ln

2
2S

0
g g

4 Q Q 71 2 3
3 m m 4
α πσ
π

⎧ ⎫

6
⎡ ⎤⎪ ⎪+ − + − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                         (B.1)

 

 

The process  e e q q g+ − → with a real gluon radiation: 

 

 

              
e e qq g

σ + −→
=  

 
 
                             = ln ln

2
2S

0
g g

4 Q Q 52 3
3 m m 2
α

6
πσ

π
⎡ ⎤
+ − + −⎢ ⎥
⎢ ⎥⎣ ⎦

              (B.2)

 

The cross section of both above mentioned are divergent for mg → 0. However in sum of 

these cross sections the singularities are mutually cancelled and this sum is independent 

from mg and is finite: 

( )e e 2S
tot 0 S1 O

α
σ σ α

π
+ − ⎡

= + +⎢
⎣ ⎦

⎤
⎥                                                                            (B.3) 
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