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Challenge in present high energy physics:
Insufficient to know a particle process on theory level (X-sections)

It should be known also on experimental level:
v' Detectors resolutions and reconstruction efficiencies
v' Capability of experiment to distinguish signal process from bkgd one

Two approaches:

*Full simulation of the wanted processes Qio Showerj

v'All available physics taken into account simulations
v'Powerful computing system + team of people + time consuming

- Fast simulation

v'Full simulation of showers in calorimeter replaced by fast
parametrisation funed by experiment

v'Reliable results obtained much faster (> 1000x Full simulation)
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“rinciples ot Fast /V\(

Goal: find spatial energy deposition in calorimeter without
full simulation - using 3D parametrisation of hadronic
shower ( for ATLAS Had-Calorimeter)

L I Part Nucl Lett 2[117](2003)52 |
Main principles of our approach:

»Incident energy is devided into a certain # energy spots

> The spots are distribured according to known shower

topology
»Electromagnetic and hadronic components are treated
separately

»Realistic fluctuations of shower profile: individual shower
profile constructed for each incident particle
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For each incident particle:

> Position of the 15" interaction (shower origin) is found
» Shower profile is constructed from a few sub-shower

pr-ofiles \ elec‘rroma@ /[hadronicj

» Incident energy is divided info EM and HD components

» Proper number of energy spots and their size is found

| Depends on Cal. energy resolution and sampling fraction

> The spots are distributed and energy of spots absorbed
in active medium is accumulated
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Calorimeter energy r'esolu’rlom%smmmg term |

e=—fk=4 @b{cons’ranf term |

If N spots is disTr'lbu’red in calor'lme’rer' = N, = s(N spots is
absorbed in active medium | Sampling fraction |

N, is a random variable obeying Poisson law: st.dev.=/V

: JN
Energy resolution: 2£-N""4 _ L = N=_E

E N, N, a’s,
Spot energy: q ¢ = a°s; . # of spots
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3-dimensional parametrisation of hadronic shower profile
from the 15t interaction point:

F(x,r)=w-¥, (x,r)+(I1-w)- ¥ (x,r
(4)/ (x,r)+(1=w) (\A)

[Elec’rromagne’ric componen’r} [ Hadronic component }

w =share of electromag. energy in shower - big fluctuations !

| dE,, .
E . dx (x) ¢e,h (x’r)

Oe,h

Te,h (x,r) =

dE/dx = longitudinal profile, ¢ = radial profile
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= r'cacC 110y OT 21-=-Yn\cic) éeneroN/

Mean EM fraction <w> depends on

energy of n° produced (f ):

=L
(e/h=1)-(f.,)+1

(f.)=0.11-InE

T

Fluctuation of EM fraction:

(w —w, )aw -1 e (") By
(B,)" I'(a,)

(w)=w, +a,p,

o,. By, =parameters

p(w)=
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v/ndf110.5 / 6B
- P1 0.6835E+06 £ 0.1761E+06
= p2 4675+ D.1646
= P3 0.59681E-01 & 01741E-D2
P4 0.3660 + 0.7384E—02
0

Fluctuation of EM fraction w:
pions 100 GeV



C  ONalTLIaINal nrotTiie ot ) comononen

> Position of the shower beginning is sampled from e
> Average profile of hadronic shower: Py
a-1_-x/p,
9k, (x)= * - € [x] =\; (interaction length)
dx ﬁh F(a) P v/ndf7.048 7 78
E wl & (B @5 =
; ) f’ﬁ q%‘q% P3 38.04 £ 4.081
Longitudinal profile of H-component & | - K
Can be found by GEANT 3 7{ K
v dots: Geant simulation = | A
v full line: fit by the function N
¢ 0 50 100 15
x [cm]
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nNaitviaual ionalt. snower broTlle

From the origin a few "principal” particles emerge
Each of them starts sub-shower at its interaction place
Individual HD-shower is a sum of the sub-showers:

dE, (x) _ Z-f; -G(x—x,,a,—1,p,)
dx /

[Ener'gy fraction carried} Origin of i™ sub-shower }

by ith particle

Wl

100

An example of individual
hadronic shower: . [
—— sub-showers Sl
—— full shower » [

o

o 50 100 150
x {(cim)
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C ONOILTLIOINAI DProT1L12 OT rIiva cComnonens

EM longitudinal dE, =E, (f] -G(x/,ae,ﬂe)+(1—f1)-

t
et -G(x—t,a,,pB, )dt}
shower profile J dx g

S R

7’
e

— 2 ’/// . 7 - a-1 __—x/p
p(f)= NCXP[— L flﬂ) I] f, fluc’rua’rions:l - G(x,a,8) = X €

o
O p°-Ia
- > v
-
= 1poe P ] v Ezoo C X/ ndf 19.50 /67
= E s ¥ /ndf 1024, / 67 V4 = L P1 3.384
= E -7 | Constant 8.123 7 E r R Pz 5.050
3 - Slope —0.2481E—-01 P = ] P3 5.525
= D175 —
= s
5 =
[
£
150 —
Ll
Averaged EM profile
100
102
75 L
50
25 [
T e
| | | ‘HH o D i LT Rpogs N
e 8] z0 40 1} 80 100 1za 140 160 180 200
o] 80 o0 120 140 160 188 200

[ermd

produced n° vs depth:

4/25/2005 S. Tokar 10



 NOINICLIAl FIVA DO T LI

An example of individual

EM shower profile: %00 |
—— Full EM shower :
1 dE,(x) 10 |
- =f - -G(x,a, ;
E, dx Ji-Glxa..fe)
+2 fr-Glx-x,a,,B,) o s e s

i22

Individual longitudinal shower profile

G(x,a,B) = gamma distribution ;p ident energy: 100 GeV
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LAAdlal shower broTtiles

Parametrization of radial profile: AE, (x,r) _ . o),/ Bu(x)
ArAx
Related to the profile function asi——, g x,r)= AEr(x,:ll)Z( )
X

No fluctuations of radial profile included ! 2rwr - AxAr - dx

L & 10°f

g Tul :_-I"i._ 100 GeV W x=10cm g 100 GeV m x=10cm

b = |EM shower) * *-%°m | =~ (HD shower) * »=%°cm

O : '.‘. - O 10 | " o x=80cm

2 e E'%:‘"i:z,,.-‘ =

S S Reag, My, b
. 0000, "maats,,

é 1 e g e ::5:] L

\% "‘*1,.1_‘4;*‘ "“\;E.. .

g g5 "*-%m = 4| Y
g -“'7.‘:;;.. 10 | A
o 10 20 30 40

EM radial profile ACUOIN 1D radial profile r fem!
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‘arameters ot the metnocg

For shower profile and its fluctuations - 25 parameters:

v’ Fluctuation of n° energy fraction ( 2)

v Longitudinal profile of EM component ( 3)
v' and its fluctuations (4 )

v Longitudinal profile of H component ( 2)
v'and its fluctuations ( 2 )

v' Radial EM component ( 6 )

v' Radial HD component ( 6 )

Dependence of parameters on energy:

\

> At given energy

P(E)=p+q;InE or P,(E)=p+qE or P,(E)=const
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Shower parameters values + energy dependence

Parameter | Energy dependence
., 5.0
G 0.102—0.0095. In &
At 14.94+ 508 InF
o, 1.83+ 0.333.In &
3, 4.534 0.120-In ¥
X, 0.814+ 0.147. In ¥
5T 2654+ 248 In¥E
Ch 0.455— 0.181.1In &
ds, 0.20
T 41 0.72— 0.068.In &
jir1 0.69— 0.064.1In &
Ceo 0.014— 0.096.In ¥
de 0.38— 0.039-In &

Longitudinal parameters
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Parameter Energy dependence
a0 0.741— 00811 In E
¥ 41 —10.94+ 851 In K
Bt 450+ 106 hhE
B2 0.00130— 0.0207. n E
Bes F.43+ 0.00177.F
ﬁei 0.0274
¥ ) —0.806—0.000681. F
Ot 0.571— 0.0186. In &
B 1.88+ 258 InE
Bz 0.138— 0.0601.- n &
Bra 2.80+ 1.16. n F
Bra 0.0527

Radial parameters
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The fast MC is compared with the test beam data of 5 Im-modules
for different incident pion energies (20 - 300) GeV
and different input conditions

- varied: Y 4
v Tilt angle ‘x’

v’ Beam position i
Test beam setup: % Br2 BC1
- 5 modules T e |Eﬂaﬂﬂ
» Each didided into :
20 cells (4 samplings, 9 S

5 towers)

- Cell read by 2 PMT Back Wuon Wall 5 Module T Calodmete Prooype
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calorimeter struc %
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= lIQT1 VN W/ 1 MMM = T 111l PPONOVYINE ¢

Full responses: Fast MC vs Test beam data for incident pion
energies: 50, 100, 200 and 300 GeV, tilt angle: 10°

o - 7] 2000 o 7] Er=e]
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~(IST IVAM(. VS IS Q110 - SAarmniirnio s

Sampling responses: Fast MC vs Test beam data

Incident energy: 100 GeV 100 GeV

]
sy

Particle type: T 2000

Position of beam: M3 center

Incident angle: 10°

o 250 SO0

Sampling 2, signal [pC]
% 3000 :— I_::; %
" Shower depth 2000
dependence 1000 |
o TB daTa I - Ll i L
() 0 250 500 0 250 S00
\ FGST MC / Sampling 3, signal [pC] Sampling 4, signal [pC]
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~OST VA (. VS IS 1T - MoOoaaitiieés

100 GeV
Module responses: Fast - -
MC vs Test beam data s — oo | FE
Incident energy: 100 GeV o e %, - ol
P 1_ I 1_ Module 1, signal [pC] Module 2, signal [pC]
article type: T — —
YP 1000 — = 5 1000 R
Position of beam: M3 center ; j : [
Incident angle: 10° 0 .;; l 5.;:; ¢ 0 | 5I:r l 100
% Module 3, signal [pCl] Module 4, signal [pCl
/Shower' transversal 5000 E &
dependence :
— TB data 0
_ ® Fast MC ) Module 5, signal [pC)
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~OST /IVAM(. VS IS aatTag - tTownwenrs

Tower responses: Fast 100 GeV
MC vs Test beam data s ==

Incident energy: 100 GeV -

8
3
o
e
1117
iEiy

0 . _ 0 20 0 50 100
PGf'TICI@ TYPQ T Tower 1, signal [pC] Tower 2, signal [pC]
 y . 1000 | tem g b 07
Position of beam: M3 center - = 1000 A
Incident angle: 10° o .
0 500 o 250 S00
/ Tower3, signal [pCl Tower 4, signal [pCl
Shower transversal o B =
dependence
— TB data )
() 0 50 100
\ sy it / Tower 3, signal [pC]
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_____ Conclusions and perspectives

» Fast MC method for sampling calorimeter based on idea
of building shower from sub-showers was created

» Good description of energy response at least in the
interval 50-300 GeV

> Good description of fluctuation on calorimeter cell level
» Method is easy adaptable for jets

To be done:
v Test method for low energies (1-20) GeV
v For application in ATLAS to include Elektromag. Cal.
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KALORIMETRIA

* Meranie energie Castic
 Fyzika hadronovej sptsky
* Modelovanie spfSky - programovy balik GEANT

EM

>. ZloZzka

')

>' Hadrénova
ZloZzka

4/25/2005 S. Tokar 23



D) Radidlny profil

eparametrizacia pre EM aj hadronovu zloZku:

AE (x,r) ~ { cr@ g AD) 7,

AxAr 7 croa’(x)_le_ro/ﬁ () < A

zavislost’ «,. od x pre EM zlozku:
a,,(x)=a, (1 — e/ % )

B B+ L.x xe(0,30)
ﬂ"e(x)_{ﬁe3+ % x€(30,180)

zavislost’ @, od x pre hadronovu zlozku:

a, (x)=a, +a,n(x)

. B+ B,.x xe (0,30)
Balx)= { By +Bx xe(30,180)
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POROVNANIE S EXPERIMENTALNYMI DATAMI

100 Gev

Madule 1, E (GeV) Madule 2, E (GeV)

[~ [ 7223 SOO [ T224
— Entriee 8 gy 10706 [ Entrfes 10704

r M:unﬁl 92,62 C Mean 4,750

: EMS 11.24 6OO F FMS 1.410

C 400 |

L 200 R

= ‘ ) ] I I | ‘ I& D 1 1 1 I

1 25 50 75 100 ] 10 20 30

Maodule 3, E (GeV) Madule 4, E (GeV)

E [ 275
E Entries 10708
—| Mean 04819
E RMS 0.4685
C U PRI IR

2 3 4 5
Madule 5, E (GaV)

Energia ulozena v moduloch,
Ina Ciara — experimentalne data,
4/%5/%1005 , . z o
ody — rychle simulacie

] 25 50 75 100
Tower 3, E (GeV)

Tower 5, E (GeV)

o 4215
=] Entries 10887
Maan 1.364
RMS 1105
i
C | ]
J 5] 10 1% 20

100 Gev 100 Gev
= e 708 B Frires e o 1000 ¢ Frvien jo70n
[ Mean D.4436 . * Maan 3.998 : e Mean 4423
} RMS D.4443 GO0 E RM5 1.977 B 750 E RMS 2,381
- 400 | 3 500 P
c 200 F e 250 [
:l PR l-l-l - \-‘d Al D ) :I Q C 1 1 1 1 .
J 1 2 3 4 5 20 30 J 1 2 5 4 o] 0 10 20 30

Tower 2, E (GeV)

1000 3 4274
Entries 10867
bhean 13.66
RMS 13.01

750

200

250

| l
] 25 50 75 130
Tower 4, E (GeV)
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Energia ulozena v toweroch,
plna Ciara — experimentalne data,
body — rychle simulacie



POROVNANIE S EXPERIMENTALNYMI DATAMI

200 Gev

200 Gav

. ID 4000 = Bt et

L . Entries 10831 I vy soe
L Mean 199.4

. EMS 17.31
r ' /ndf 4605/ 111
_ Constant 407.1

Mean 200.2
Sigma 14.39

[

L ]

s

50 100 150 Zoo
Sampling 1, E (GeV)

] 7203
[ ] Entries. 10831
. Mean 53.20
39.67

oo b b Py 8 e I

Il 1 1
a0 120 140 160 180 200 220 240 2680 280 300 ) 50 106 150 200
E [Gevl Sampling 3, E (GeV)

Celkova uloZena energia,
4/glné1 Clara — experimentalne data,

5/2005 . , . Tok
O%ioy — rychle simulécie

200 GeV
5Q0 F

400 -

300 i+

200

100

1800 F

1400
1200
1000
BOOD
600
400
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o

[T 4202
Entries 16a31
Maan 87.27
FMS 45,67

[ R Y e

1
100 150 Z00

Sampling 2, E (GeV)

[1] 4004
Entrias 1ca3
Mean 21.00
FMS 27.61

L N 1

< TTT T T T ™ T T[T ]TT

o0 150 200

Sampling 4, E (GeV)

Energia uloZena v samplingoch,

plna Ciara — experimentalne data,
ar ’ . roe

body — rychle simulacie




POROVNANIE S EXPERIMENTALNYMI DATAMI
200 Gev

200 Gev 200 Gev
= Ewe | 1000 e et i 1500 b 1o
i RS 0.5528 7 50 RMS 2836 j RMS 3.245
C - 1000
B 500 i
- 250 i =00
C latarata latatata laatara O I L e — |
) 4 85 8 10 40 80 ) 0 20 40 80
Madule 1, E (GaV) Madule 2, E (GeV) Tower 2, E (GeV)
E o i Y 7223 ] 7124 I0g W 4213 ] 4214
g K /50 s ¢ 500
r 500 y
B ’ 400
r 4 h
s 250 " 200
o ) 4 L ‘ D ) 1 ‘ L D 1 I . )
) 50 100 150 200 40 60 ) 50 100 150 200 o0 80 100 150 200
Maodule 3, E (GeY) Madule 4, E (GeY) Tower 3, E (GeY) Tower 4, E (GeV)
- g
C I |-\-\-I-|-\-\-I-‘-\-I-I- L1 . |
) 2z 4 8 8 10 ) 10 20 30 40
Madule 5, E (GeV) Tower 8, E (GeV)
* W 4 * W /4
Energia ulozena v moduloch, Energia ulozena v toweroch,
14 N o 14 14 14 W . 14 14
Ina Ciara — experimentalne data, plna Ciara — experimentalne data,
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POROVNANIE S EXPERIMENTALNYMI DATAMI
50 Gev

50 Gev S50 Gav

. D 4000 F Drrien | 0
. Entries 7688 i v ewl 175

. Mean 50.14 o

. RMS 6.133 3 150 &

. ¥ /ndf 3458 / 129 105 [
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— 1 L L L 1 1 L
60 ] 20 40 60
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| 2250 | fre
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1500 F
1250 fr
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Ina ¢iara — experimentalne data, plna Ciara — experimentalne data,
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POROVNANIE S EXPERIMENTALNYMI DATAMI

50 Gev
400 |

—r

il LR RN R R R
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Entriez. 74B8
[ 3478

ean o
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ody — rychle simulacie
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plna Ciara — experimentalne data,
ar ’ . roe

body — rychle simulacie



ZAVER

pomocou Monte Carlo simuldcii (program GEANT) sme skdmali
topoldgiu hadrénovych sprsok v kalorimetri s ciel'om ndjst’
zdkladné tendencie

nasli sme parametrizdciu profilu sprsky a sposob zahrnutia jeho
fluktudcii

na zdklade tychto znalosti bol vytvoreny program pre rychle
simuldcie

dosiahli sme vybornd zhodu s redlnymi experimentdl-nymi
ddtami

E,,of1§(x)

dE ,
”(x)=< exp(—x/ﬂ,,)
dx E, (- f)—

\ T
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